L(s) = 1 | + (−1 − i)2-s + (−0.147 − 0.147i)3-s + 2i·4-s − 8.54i·5-s + 0.295i·6-s − 0.295·7-s + (2 − 2i)8-s − 8.95i·9-s + (−8.54 + 8.54i)10-s + (−0.442 − 0.442i)11-s + (0.295 − 0.295i)12-s + 6.54i·13-s + (0.295 + 0.295i)14-s + (−1.26 + 1.26i)15-s − 4·16-s + (8.95 + 8.95i)17-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s + (−0.0492 − 0.0492i)3-s + 0.5i·4-s − 1.70i·5-s + 0.0492i·6-s − 0.0421·7-s + (0.250 − 0.250i)8-s − 0.995i·9-s + (−0.854 + 0.854i)10-s + (−0.0402 − 0.0402i)11-s + (0.0246 − 0.0246i)12-s + 0.503i·13-s + (0.0210 + 0.0210i)14-s + (−0.0841 + 0.0841i)15-s − 0.250·16-s + (0.526 + 0.526i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 58 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.154 + 0.988i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.154 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.576677 - 0.673526i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.576677 - 0.673526i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + i)T \) |
| 29 | \( 1 + (26.2 - 12.3i)T \) |
good | 3 | \( 1 + (0.147 + 0.147i)T + 9iT^{2} \) |
| 5 | \( 1 + 8.54iT - 25T^{2} \) |
| 7 | \( 1 + 0.295T + 49T^{2} \) |
| 11 | \( 1 + (0.442 + 0.442i)T + 121iT^{2} \) |
| 13 | \( 1 - 6.54iT - 169T^{2} \) |
| 17 | \( 1 + (-8.95 - 8.95i)T + 289iT^{2} \) |
| 19 | \( 1 + (-19.9 - 19.9i)T + 361iT^{2} \) |
| 23 | \( 1 - 30.1T + 529T^{2} \) |
| 31 | \( 1 + (28.9 + 28.9i)T + 961iT^{2} \) |
| 37 | \( 1 + (-25.8 + 25.8i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (-31.7 + 31.7i)T - 1.68e3iT^{2} \) |
| 43 | \( 1 + (-50.6 - 50.6i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (8.98 - 8.98i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 36.0T + 2.80e3T^{2} \) |
| 59 | \( 1 - 17.1T + 3.48e3T^{2} \) |
| 61 | \( 1 + (0.499 + 0.499i)T + 3.72e3iT^{2} \) |
| 67 | \( 1 - 113. iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 80.2iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-7.45 + 7.45i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + (-40.9 - 40.9i)T + 6.24e3iT^{2} \) |
| 83 | \( 1 + 104T + 6.88e3T^{2} \) |
| 89 | \( 1 + (-43.6 - 43.6i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (-55.4 + 55.4i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.61858136936827141306117208714, −12.99201227299513480102769747274, −12.43158289646496061995226188066, −11.36255481706236493767893910875, −9.572621397881206596706801984954, −9.013222949537231786852163600207, −7.66857876481721200958718361485, −5.63180427588050855257209659047, −3.92347475206225640909444950916, −1.15391140507442434004647527706,
2.87526278439503989591921713497, 5.37913960605198300717458070994, 6.96408443919003709028938568203, 7.69101789154214724965280494916, 9.496653190097419979757123431528, 10.66240708688743942675576260855, 11.31886129277607021175986866591, 13.35841387394291212809741046539, 14.36382697296555482385314058420, 15.23582376755031240505541751217