L(s) = 1 | + (−1 − i)2-s + (−0.147 − 0.147i)3-s + 2i·4-s − 8.54i·5-s + 0.295i·6-s − 0.295·7-s + (2 − 2i)8-s − 8.95i·9-s + (−8.54 + 8.54i)10-s + (−0.442 − 0.442i)11-s + (0.295 − 0.295i)12-s + 6.54i·13-s + (0.295 + 0.295i)14-s + (−1.26 + 1.26i)15-s − 4·16-s + (8.95 + 8.95i)17-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s + (−0.0492 − 0.0492i)3-s + 0.5i·4-s − 1.70i·5-s + 0.0492i·6-s − 0.0421·7-s + (0.250 − 0.250i)8-s − 0.995i·9-s + (−0.854 + 0.854i)10-s + (−0.0402 − 0.0402i)11-s + (0.0246 − 0.0246i)12-s + 0.503i·13-s + (0.0210 + 0.0210i)14-s + (−0.0841 + 0.0841i)15-s − 0.250·16-s + (0.526 + 0.526i)17-s + ⋯ |
Λ(s)=(=(58s/2ΓC(s)L(s)(−0.154+0.988i)Λ(3−s)
Λ(s)=(=(58s/2ΓC(s+1)L(s)(−0.154+0.988i)Λ(1−s)
Degree: |
2 |
Conductor: |
58
= 2⋅29
|
Sign: |
−0.154+0.988i
|
Analytic conductor: |
1.58038 |
Root analytic conductor: |
1.25713 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ58(41,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 58, ( :1), −0.154+0.988i)
|
Particular Values
L(23) |
≈ |
0.576677−0.673526i |
L(21) |
≈ |
0.576677−0.673526i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1+i)T |
| 29 | 1+(26.2−12.3i)T |
good | 3 | 1+(0.147+0.147i)T+9iT2 |
| 5 | 1+8.54iT−25T2 |
| 7 | 1+0.295T+49T2 |
| 11 | 1+(0.442+0.442i)T+121iT2 |
| 13 | 1−6.54iT−169T2 |
| 17 | 1+(−8.95−8.95i)T+289iT2 |
| 19 | 1+(−19.9−19.9i)T+361iT2 |
| 23 | 1−30.1T+529T2 |
| 31 | 1+(28.9+28.9i)T+961iT2 |
| 37 | 1+(−25.8+25.8i)T−1.36e3iT2 |
| 41 | 1+(−31.7+31.7i)T−1.68e3iT2 |
| 43 | 1+(−50.6−50.6i)T+1.84e3iT2 |
| 47 | 1+(8.98−8.98i)T−2.20e3iT2 |
| 53 | 1−36.0T+2.80e3T2 |
| 59 | 1−17.1T+3.48e3T2 |
| 61 | 1+(0.499+0.499i)T+3.72e3iT2 |
| 67 | 1−113.iT−4.48e3T2 |
| 71 | 1+80.2iT−5.04e3T2 |
| 73 | 1+(−7.45+7.45i)T−5.32e3iT2 |
| 79 | 1+(−40.9−40.9i)T+6.24e3iT2 |
| 83 | 1+104T+6.88e3T2 |
| 89 | 1+(−43.6−43.6i)T+7.92e3iT2 |
| 97 | 1+(−55.4+55.4i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.61858136936827141306117208714, −12.99201227299513480102769747274, −12.43158289646496061995226188066, −11.36255481706236493767893910875, −9.572621397881206596706801984954, −9.013222949537231786852163600207, −7.66857876481721200958718361485, −5.63180427588050855257209659047, −3.92347475206225640909444950916, −1.15391140507442434004647527706,
2.87526278439503989591921713497, 5.37913960605198300717458070994, 6.96408443919003709028938568203, 7.69101789154214724965280494916, 9.496653190097419979757123431528, 10.66240708688743942675576260855, 11.31886129277607021175986866591, 13.35841387394291212809741046539, 14.36382697296555482385314058420, 15.23582376755031240505541751217