L(s) = 1 | + (−0.900 − 0.433i)2-s + (1.02 − 1.28i)3-s + (0.623 + 0.781i)4-s + (−1.07 − 0.517i)5-s + (−1.47 + 0.711i)6-s + (1.27 − 1.59i)7-s + (−0.222 − 0.974i)8-s + (0.0699 + 0.306i)9-s + (0.744 + 0.933i)10-s + (−0.819 + 3.59i)11-s + 1.63·12-s + (−0.479 + 2.10i)13-s + (−1.84 + 0.886i)14-s + (−1.76 + 0.848i)15-s + (−0.222 + 0.974i)16-s − 6.53·17-s + ⋯ |
L(s) = 1 | + (−0.637 − 0.306i)2-s + (0.589 − 0.739i)3-s + (0.311 + 0.390i)4-s + (−0.481 − 0.231i)5-s + (−0.602 + 0.290i)6-s + (0.481 − 0.603i)7-s + (−0.0786 − 0.344i)8-s + (0.0233 + 0.102i)9-s + (0.235 + 0.295i)10-s + (−0.247 + 1.08i)11-s + 0.473·12-s + (−0.133 + 0.583i)13-s + (−0.492 + 0.236i)14-s + (−0.455 + 0.219i)15-s + (−0.0556 + 0.243i)16-s − 1.58·17-s + ⋯ |
Λ(s)=(=(58s/2ΓC(s)L(s)(0.614+0.788i)Λ(2−s)
Λ(s)=(=(58s/2ΓC(s+1/2)L(s)(0.614+0.788i)Λ(1−s)
Degree: |
2 |
Conductor: |
58
= 2⋅29
|
Sign: |
0.614+0.788i
|
Analytic conductor: |
0.463132 |
Root analytic conductor: |
0.680538 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ58(45,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 58, ( :1/2), 0.614+0.788i)
|
Particular Values
L(1) |
≈ |
0.672759−0.328599i |
L(21) |
≈ |
0.672759−0.328599i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.900+0.433i)T |
| 29 | 1+(−1.75+5.09i)T |
good | 3 | 1+(−1.02+1.28i)T+(−0.667−2.92i)T2 |
| 5 | 1+(1.07+0.517i)T+(3.11+3.90i)T2 |
| 7 | 1+(−1.27+1.59i)T+(−1.55−6.82i)T2 |
| 11 | 1+(0.819−3.59i)T+(−9.91−4.77i)T2 |
| 13 | 1+(0.479−2.10i)T+(−11.7−5.64i)T2 |
| 17 | 1+6.53T+17T2 |
| 19 | 1+(−3.31−4.15i)T+(−4.22+18.5i)T2 |
| 23 | 1+(−5.30+2.55i)T+(14.3−17.9i)T2 |
| 31 | 1+(8.10+3.90i)T+(19.3+24.2i)T2 |
| 37 | 1+(0.406+1.78i)T+(−33.3+16.0i)T2 |
| 41 | 1+8.32T+41T2 |
| 43 | 1+(−3.31+1.59i)T+(26.8−33.6i)T2 |
| 47 | 1+(−0.220+0.967i)T+(−42.3−20.3i)T2 |
| 53 | 1+(−5.10−2.45i)T+(33.0+41.4i)T2 |
| 59 | 1−2.94T+59T2 |
| 61 | 1+(1.12−1.41i)T+(−13.5−59.4i)T2 |
| 67 | 1+(1.34+5.89i)T+(−60.3+29.0i)T2 |
| 71 | 1+(0.836−3.66i)T+(−63.9−30.8i)T2 |
| 73 | 1+(11.4−5.52i)T+(45.5−57.0i)T2 |
| 79 | 1+(3.14+13.7i)T+(−71.1+34.2i)T2 |
| 83 | 1+(−1.27−1.60i)T+(−18.4+80.9i)T2 |
| 89 | 1+(−14.8−7.16i)T+(55.4+69.5i)T2 |
| 97 | 1+(2.86+3.59i)T+(−21.5+94.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.01687231861016030508341883882, −13.76181712033674516475855588533, −12.76695450116640065944895007194, −11.63000226753219377083002232428, −10.40627171126045814272768096541, −8.963964115106636420596499608253, −7.79567785121068913314616494151, −7.05503994162231421680785614924, −4.39231051012775475224377202971, −2.04754554209974826976360601438,
3.17937074556836729539283677817, 5.20735773581590030516994544317, 7.06390817293857783222318047311, 8.576169814825708842112054332374, 9.147299650041159251404268489018, 10.71084515642885466165705077048, 11.54532389285365864472748130329, 13.34236243955626325862185173298, 14.74709454999103112137187076041, 15.42405112315332765079705485417