L(s) = 1 | + (−0.900 + 0.433i)2-s + (1.02 + 1.28i)3-s + (0.623 − 0.781i)4-s + (−1.07 + 0.517i)5-s + (−1.47 − 0.711i)6-s + (1.27 + 1.59i)7-s + (−0.222 + 0.974i)8-s + (0.0699 − 0.306i)9-s + (0.744 − 0.933i)10-s + (−0.819 − 3.59i)11-s + 1.63·12-s + (−0.479 − 2.10i)13-s + (−1.84 − 0.886i)14-s + (−1.76 − 0.848i)15-s + (−0.222 − 0.974i)16-s − 6.53·17-s + ⋯ |
L(s) = 1 | + (−0.637 + 0.306i)2-s + (0.589 + 0.739i)3-s + (0.311 − 0.390i)4-s + (−0.481 + 0.231i)5-s + (−0.602 − 0.290i)6-s + (0.481 + 0.603i)7-s + (−0.0786 + 0.344i)8-s + (0.0233 − 0.102i)9-s + (0.235 − 0.295i)10-s + (−0.247 − 1.08i)11-s + 0.473·12-s + (−0.133 − 0.583i)13-s + (−0.492 − 0.236i)14-s + (−0.455 − 0.219i)15-s + (−0.0556 − 0.243i)16-s − 1.58·17-s + ⋯ |
Λ(s)=(=(58s/2ΓC(s)L(s)(0.614−0.788i)Λ(2−s)
Λ(s)=(=(58s/2ΓC(s+1/2)L(s)(0.614−0.788i)Λ(1−s)
Degree: |
2 |
Conductor: |
58
= 2⋅29
|
Sign: |
0.614−0.788i
|
Analytic conductor: |
0.463132 |
Root analytic conductor: |
0.680538 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ58(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 58, ( :1/2), 0.614−0.788i)
|
Particular Values
L(1) |
≈ |
0.672759+0.328599i |
L(21) |
≈ |
0.672759+0.328599i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.900−0.433i)T |
| 29 | 1+(−1.75−5.09i)T |
good | 3 | 1+(−1.02−1.28i)T+(−0.667+2.92i)T2 |
| 5 | 1+(1.07−0.517i)T+(3.11−3.90i)T2 |
| 7 | 1+(−1.27−1.59i)T+(−1.55+6.82i)T2 |
| 11 | 1+(0.819+3.59i)T+(−9.91+4.77i)T2 |
| 13 | 1+(0.479+2.10i)T+(−11.7+5.64i)T2 |
| 17 | 1+6.53T+17T2 |
| 19 | 1+(−3.31+4.15i)T+(−4.22−18.5i)T2 |
| 23 | 1+(−5.30−2.55i)T+(14.3+17.9i)T2 |
| 31 | 1+(8.10−3.90i)T+(19.3−24.2i)T2 |
| 37 | 1+(0.406−1.78i)T+(−33.3−16.0i)T2 |
| 41 | 1+8.32T+41T2 |
| 43 | 1+(−3.31−1.59i)T+(26.8+33.6i)T2 |
| 47 | 1+(−0.220−0.967i)T+(−42.3+20.3i)T2 |
| 53 | 1+(−5.10+2.45i)T+(33.0−41.4i)T2 |
| 59 | 1−2.94T+59T2 |
| 61 | 1+(1.12+1.41i)T+(−13.5+59.4i)T2 |
| 67 | 1+(1.34−5.89i)T+(−60.3−29.0i)T2 |
| 71 | 1+(0.836+3.66i)T+(−63.9+30.8i)T2 |
| 73 | 1+(11.4+5.52i)T+(45.5+57.0i)T2 |
| 79 | 1+(3.14−13.7i)T+(−71.1−34.2i)T2 |
| 83 | 1+(−1.27+1.60i)T+(−18.4−80.9i)T2 |
| 89 | 1+(−14.8+7.16i)T+(55.4−69.5i)T2 |
| 97 | 1+(2.86−3.59i)T+(−21.5−94.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.42405112315332765079705485417, −14.74709454999103112137187076041, −13.34236243955626325862185173298, −11.54532389285365864472748130329, −10.71084515642885466165705077048, −9.147299650041159251404268489018, −8.576169814825708842112054332374, −7.06390817293857783222318047311, −5.20735773581590030516994544317, −3.17937074556836729539283677817,
2.04754554209974826976360601438, 4.39231051012775475224377202971, 7.05503994162231421680785614924, 7.79567785121068913314616494151, 8.963964115106636420596499608253, 10.40627171126045814272768096541, 11.63000226753219377083002232428, 12.76695450116640065944895007194, 13.76181712033674516475855588533, 15.01687231861016030508341883882