Properties

Label 2-588-1.1-c5-0-16
Degree $2$
Conductor $588$
Sign $-1$
Analytic cond. $94.3056$
Root an. cond. $9.71111$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s − 68·5-s + 81·9-s − 388·11-s + 316·13-s + 612·15-s + 1.05e3·17-s − 1.05e3·19-s + 624·23-s + 1.49e3·25-s − 729·27-s + 7.25e3·29-s − 2.29e3·31-s + 3.49e3·33-s + 1.24e4·37-s − 2.84e3·39-s − 5.37e3·41-s + 1.41e4·43-s − 5.50e3·45-s − 4.71e3·47-s − 9.50e3·51-s + 3.78e3·53-s + 2.63e4·55-s + 9.46e3·57-s − 2.52e4·59-s − 2.06e4·61-s − 2.14e4·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.21·5-s + 1/3·9-s − 0.966·11-s + 0.518·13-s + 0.702·15-s + 0.886·17-s − 0.668·19-s + 0.245·23-s + 0.479·25-s − 0.192·27-s + 1.60·29-s − 0.429·31-s + 0.558·33-s + 1.49·37-s − 0.299·39-s − 0.499·41-s + 1.16·43-s − 0.405·45-s − 0.311·47-s − 0.511·51-s + 0.184·53-s + 1.17·55-s + 0.385·57-s − 0.944·59-s − 0.711·61-s − 0.630·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(94.3056\)
Root analytic conductor: \(9.71111\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 588,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p^{2} T \)
7 \( 1 \)
good5 \( 1 + 68 T + p^{5} T^{2} \)
11 \( 1 + 388 T + p^{5} T^{2} \)
13 \( 1 - 316 T + p^{5} T^{2} \)
17 \( 1 - 1056 T + p^{5} T^{2} \)
19 \( 1 + 1052 T + p^{5} T^{2} \)
23 \( 1 - 624 T + p^{5} T^{2} \)
29 \( 1 - 250 p T + p^{5} T^{2} \)
31 \( 1 + 2296 T + p^{5} T^{2} \)
37 \( 1 - 12426 T + p^{5} T^{2} \)
41 \( 1 + 5376 T + p^{5} T^{2} \)
43 \( 1 - 14164 T + p^{5} T^{2} \)
47 \( 1 + 4712 T + p^{5} T^{2} \)
53 \( 1 - 3782 T + p^{5} T^{2} \)
59 \( 1 + 25244 T + p^{5} T^{2} \)
61 \( 1 + 20668 T + p^{5} T^{2} \)
67 \( 1 - 49012 T + p^{5} T^{2} \)
71 \( 1 - 4760 T + p^{5} T^{2} \)
73 \( 1 - 65264 T + p^{5} T^{2} \)
79 \( 1 + 49736 T + p^{5} T^{2} \)
83 \( 1 + 7788 T + p^{5} T^{2} \)
89 \( 1 + 36904 T + p^{5} T^{2} \)
97 \( 1 - 98264 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.579995150175436473565911838828, −8.280920248418602921874737033106, −7.83770300406472300144127344855, −6.80854968632410975348193474195, −5.78321255851835710278346628820, −4.75721686232100214965746363280, −3.87430414602856007582115479115, −2.73611113748570120100016771361, −1.03333346673946836957456104025, 0, 1.03333346673946836957456104025, 2.73611113748570120100016771361, 3.87430414602856007582115479115, 4.75721686232100214965746363280, 5.78321255851835710278346628820, 6.80854968632410975348193474195, 7.83770300406472300144127344855, 8.280920248418602921874737033106, 9.579995150175436473565911838828

Graph of the $Z$-function along the critical line