L(s) = 1 | − 9·3-s − 68·5-s + 81·9-s − 388·11-s + 316·13-s + 612·15-s + 1.05e3·17-s − 1.05e3·19-s + 624·23-s + 1.49e3·25-s − 729·27-s + 7.25e3·29-s − 2.29e3·31-s + 3.49e3·33-s + 1.24e4·37-s − 2.84e3·39-s − 5.37e3·41-s + 1.41e4·43-s − 5.50e3·45-s − 4.71e3·47-s − 9.50e3·51-s + 3.78e3·53-s + 2.63e4·55-s + 9.46e3·57-s − 2.52e4·59-s − 2.06e4·61-s − 2.14e4·65-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.21·5-s + 1/3·9-s − 0.966·11-s + 0.518·13-s + 0.702·15-s + 0.886·17-s − 0.668·19-s + 0.245·23-s + 0.479·25-s − 0.192·27-s + 1.60·29-s − 0.429·31-s + 0.558·33-s + 1.49·37-s − 0.299·39-s − 0.499·41-s + 1.16·43-s − 0.405·45-s − 0.311·47-s − 0.511·51-s + 0.184·53-s + 1.17·55-s + 0.385·57-s − 0.944·59-s − 0.711·61-s − 0.630·65-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(588s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+p2T |
| 7 | 1 |
good | 5 | 1+68T+p5T2 |
| 11 | 1+388T+p5T2 |
| 13 | 1−316T+p5T2 |
| 17 | 1−1056T+p5T2 |
| 19 | 1+1052T+p5T2 |
| 23 | 1−624T+p5T2 |
| 29 | 1−250pT+p5T2 |
| 31 | 1+2296T+p5T2 |
| 37 | 1−12426T+p5T2 |
| 41 | 1+5376T+p5T2 |
| 43 | 1−14164T+p5T2 |
| 47 | 1+4712T+p5T2 |
| 53 | 1−3782T+p5T2 |
| 59 | 1+25244T+p5T2 |
| 61 | 1+20668T+p5T2 |
| 67 | 1−49012T+p5T2 |
| 71 | 1−4760T+p5T2 |
| 73 | 1−65264T+p5T2 |
| 79 | 1+49736T+p5T2 |
| 83 | 1+7788T+p5T2 |
| 89 | 1+36904T+p5T2 |
| 97 | 1−98264T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.579995150175436473565911838828, −8.280920248418602921874737033106, −7.83770300406472300144127344855, −6.80854968632410975348193474195, −5.78321255851835710278346628820, −4.75721686232100214965746363280, −3.87430414602856007582115479115, −2.73611113748570120100016771361, −1.03333346673946836957456104025, 0,
1.03333346673946836957456104025, 2.73611113748570120100016771361, 3.87430414602856007582115479115, 4.75721686232100214965746363280, 5.78321255851835710278346628820, 6.80854968632410975348193474195, 7.83770300406472300144127344855, 8.280920248418602921874737033106, 9.579995150175436473565911838828