Properties

Label 588.6.a.a
Level 588588
Weight 66
Character orbit 588.a
Self dual yes
Analytic conductor 94.30694.306
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(1,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 588=22372 588 = 2^{2} \cdot 3 \cdot 7^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 588.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 94.305686050094.3056860500
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q9q368q5+81q9388q11+316q13+612q15+1056q171052q19+624q23+1499q25729q27+7250q292296q31+3492q33+12426q372844q39+31428q99+O(q100) q - 9 q^{3} - 68 q^{5} + 81 q^{9} - 388 q^{11} + 316 q^{13} + 612 q^{15} + 1056 q^{17} - 1052 q^{19} + 624 q^{23} + 1499 q^{25} - 729 q^{27} + 7250 q^{29} - 2296 q^{31} + 3492 q^{33} + 12426 q^{37} - 2844 q^{39}+ \cdots - 31428 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −9.00000 0 −68.0000 0 0 0 81.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.6.a.a 1
7.b odd 2 1 588.6.a.f yes 1
7.c even 3 2 588.6.i.g 2
7.d odd 6 2 588.6.i.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
588.6.a.a 1 1.a even 1 1 trivial
588.6.a.f yes 1 7.b odd 2 1
588.6.i.a 2 7.d odd 6 2
588.6.i.g 2 7.c even 3 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5+68 T_{5} + 68 acting on S6new(Γ0(588))S_{6}^{\mathrm{new}}(\Gamma_0(588)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+9 T + 9 Copy content Toggle raw display
55 T+68 T + 68 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T+388 T + 388 Copy content Toggle raw display
1313 T316 T - 316 Copy content Toggle raw display
1717 T1056 T - 1056 Copy content Toggle raw display
1919 T+1052 T + 1052 Copy content Toggle raw display
2323 T624 T - 624 Copy content Toggle raw display
2929 T7250 T - 7250 Copy content Toggle raw display
3131 T+2296 T + 2296 Copy content Toggle raw display
3737 T12426 T - 12426 Copy content Toggle raw display
4141 T+5376 T + 5376 Copy content Toggle raw display
4343 T14164 T - 14164 Copy content Toggle raw display
4747 T+4712 T + 4712 Copy content Toggle raw display
5353 T3782 T - 3782 Copy content Toggle raw display
5959 T+25244 T + 25244 Copy content Toggle raw display
6161 T+20668 T + 20668 Copy content Toggle raw display
6767 T49012 T - 49012 Copy content Toggle raw display
7171 T4760 T - 4760 Copy content Toggle raw display
7373 T65264 T - 65264 Copy content Toggle raw display
7979 T+49736 T + 49736 Copy content Toggle raw display
8383 T+7788 T + 7788 Copy content Toggle raw display
8989 T+36904 T + 36904 Copy content Toggle raw display
9797 T98264 T - 98264 Copy content Toggle raw display
show more
show less