L(s) = 1 | − 9·3-s + 96.3·5-s + 81·9-s − 179.·11-s − 56.8·13-s − 867.·15-s + 1.41e3·17-s − 1.29e3·19-s − 4.66e3·23-s + 6.16e3·25-s − 729·27-s − 5.00e3·29-s − 7.44e3·31-s + 1.61e3·33-s − 9.08e3·37-s + 511.·39-s + 6.62e3·41-s − 1.29e4·43-s + 7.80e3·45-s − 5.49e3·47-s − 1.27e4·51-s + 2.95e4·53-s − 1.73e4·55-s + 1.16e4·57-s + 1.05e3·59-s + 9.48e3·61-s − 5.48e3·65-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.72·5-s + 0.333·9-s − 0.447·11-s − 0.0933·13-s − 0.995·15-s + 1.18·17-s − 0.821·19-s − 1.84·23-s + 1.97·25-s − 0.192·27-s − 1.10·29-s − 1.39·31-s + 0.258·33-s − 1.09·37-s + 0.0538·39-s + 0.615·41-s − 1.06·43-s + 0.574·45-s − 0.363·47-s − 0.686·51-s + 1.44·53-s − 0.771·55-s + 0.474·57-s + 0.0395·59-s + 0.326·61-s − 0.160·65-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(588s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+9T |
| 7 | 1 |
good | 5 | 1−96.3T+3.12e3T2 |
| 11 | 1+179.T+1.61e5T2 |
| 13 | 1+56.8T+3.71e5T2 |
| 17 | 1−1.41e3T+1.41e6T2 |
| 19 | 1+1.29e3T+2.47e6T2 |
| 23 | 1+4.66e3T+6.43e6T2 |
| 29 | 1+5.00e3T+2.05e7T2 |
| 31 | 1+7.44e3T+2.86e7T2 |
| 37 | 1+9.08e3T+6.93e7T2 |
| 41 | 1−6.62e3T+1.15e8T2 |
| 43 | 1+1.29e4T+1.47e8T2 |
| 47 | 1+5.49e3T+2.29e8T2 |
| 53 | 1−2.95e4T+4.18e8T2 |
| 59 | 1−1.05e3T+7.14e8T2 |
| 61 | 1−9.48e3T+8.44e8T2 |
| 67 | 1−1.33e3T+1.35e9T2 |
| 71 | 1−4.98e4T+1.80e9T2 |
| 73 | 1+7.57e4T+2.07e9T2 |
| 79 | 1−6.23e4T+3.07e9T2 |
| 83 | 1−5.32e4T+3.93e9T2 |
| 89 | 1+1.18e5T+5.58e9T2 |
| 97 | 1+1.36e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.796135763238285245161693806181, −8.754216189562243225589175078607, −7.59684865624907748689837199291, −6.51696562881039861526819474097, −5.68533177585037145593370268854, −5.26228102428563177642512044190, −3.78251488475464816347125960107, −2.28030353764693032382853695290, −1.53445099053973242533941348184, 0,
1.53445099053973242533941348184, 2.28030353764693032382853695290, 3.78251488475464816347125960107, 5.26228102428563177642512044190, 5.68533177585037145593370268854, 6.51696562881039861526819474097, 7.59684865624907748689837199291, 8.754216189562243225589175078607, 9.796135763238285245161693806181