Properties

Label 588.6.a.i.1.2
Level $588$
Weight $6$
Character 588.1
Self dual yes
Analytic conductor $94.306$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(1,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(94.3056860500\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2641}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 660 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-25.1953\) of defining polynomial
Character \(\chi\) \(=\) 588.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} +96.3907 q^{5} +81.0000 q^{9} -179.516 q^{11} -56.8747 q^{13} -867.516 q^{15} +1416.89 q^{17} -1292.59 q^{19} -4668.61 q^{23} +6166.16 q^{25} -729.000 q^{27} -5003.10 q^{29} -7444.35 q^{31} +1615.64 q^{33} -9080.90 q^{37} +511.872 q^{39} +6628.36 q^{41} -12924.5 q^{43} +7807.64 q^{45} -5498.00 q^{47} -12752.0 q^{51} +29539.1 q^{53} -17303.7 q^{55} +11633.4 q^{57} +1058.51 q^{59} +9487.86 q^{61} -5482.19 q^{65} +1331.03 q^{67} +42017.5 q^{69} +49811.2 q^{71} -75758.3 q^{73} -55495.4 q^{75} +62370.8 q^{79} +6561.00 q^{81} +53221.5 q^{83} +136575. q^{85} +45027.9 q^{87} -118682. q^{89} +66999.1 q^{93} -124594. q^{95} -136608. q^{97} -14540.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{3} + 90 q^{5} + 162 q^{9} + 566 q^{11} - 936 q^{13} - 810 q^{15} - 558 q^{17} - 324 q^{19} - 2862 q^{23} + 3082 q^{25} - 1458 q^{27} - 4456 q^{29} - 1116 q^{31} - 5094 q^{33} - 23712 q^{37}+ \cdots + 45846 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) 96.3907 1.72429 0.862144 0.506663i \(-0.169121\pi\)
0.862144 + 0.506663i \(0.169121\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −179.516 −0.447323 −0.223662 0.974667i \(-0.571801\pi\)
−0.223662 + 0.974667i \(0.571801\pi\)
\(12\) 0 0
\(13\) −56.8747 −0.0933385 −0.0466693 0.998910i \(-0.514861\pi\)
−0.0466693 + 0.998910i \(0.514861\pi\)
\(14\) 0 0
\(15\) −867.516 −0.995518
\(16\) 0 0
\(17\) 1416.89 1.18909 0.594545 0.804063i \(-0.297332\pi\)
0.594545 + 0.804063i \(0.297332\pi\)
\(18\) 0 0
\(19\) −1292.59 −0.821445 −0.410722 0.911760i \(-0.634723\pi\)
−0.410722 + 0.911760i \(0.634723\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4668.61 −1.84021 −0.920107 0.391668i \(-0.871898\pi\)
−0.920107 + 0.391668i \(0.871898\pi\)
\(24\) 0 0
\(25\) 6166.16 1.97317
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −5003.10 −1.10470 −0.552349 0.833613i \(-0.686269\pi\)
−0.552349 + 0.833613i \(0.686269\pi\)
\(30\) 0 0
\(31\) −7444.35 −1.39131 −0.695653 0.718378i \(-0.744885\pi\)
−0.695653 + 0.718378i \(0.744885\pi\)
\(32\) 0 0
\(33\) 1615.64 0.258262
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −9080.90 −1.09050 −0.545249 0.838274i \(-0.683565\pi\)
−0.545249 + 0.838274i \(0.683565\pi\)
\(38\) 0 0
\(39\) 511.872 0.0538890
\(40\) 0 0
\(41\) 6628.36 0.615809 0.307905 0.951417i \(-0.400372\pi\)
0.307905 + 0.951417i \(0.400372\pi\)
\(42\) 0 0
\(43\) −12924.5 −1.06597 −0.532983 0.846126i \(-0.678929\pi\)
−0.532983 + 0.846126i \(0.678929\pi\)
\(44\) 0 0
\(45\) 7807.64 0.574763
\(46\) 0 0
\(47\) −5498.00 −0.363045 −0.181522 0.983387i \(-0.558103\pi\)
−0.181522 + 0.983387i \(0.558103\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −12752.0 −0.686521
\(52\) 0 0
\(53\) 29539.1 1.44447 0.722233 0.691649i \(-0.243116\pi\)
0.722233 + 0.691649i \(0.243116\pi\)
\(54\) 0 0
\(55\) −17303.7 −0.771314
\(56\) 0 0
\(57\) 11633.4 0.474261
\(58\) 0 0
\(59\) 1058.51 0.0395880 0.0197940 0.999804i \(-0.493699\pi\)
0.0197940 + 0.999804i \(0.493699\pi\)
\(60\) 0 0
\(61\) 9487.86 0.326470 0.163235 0.986587i \(-0.447807\pi\)
0.163235 + 0.986587i \(0.447807\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5482.19 −0.160943
\(66\) 0 0
\(67\) 1331.03 0.0362244 0.0181122 0.999836i \(-0.494234\pi\)
0.0181122 + 0.999836i \(0.494234\pi\)
\(68\) 0 0
\(69\) 42017.5 1.06245
\(70\) 0 0
\(71\) 49811.2 1.17268 0.586342 0.810064i \(-0.300567\pi\)
0.586342 + 0.810064i \(0.300567\pi\)
\(72\) 0 0
\(73\) −75758.3 −1.66388 −0.831942 0.554863i \(-0.812771\pi\)
−0.831942 + 0.554863i \(0.812771\pi\)
\(74\) 0 0
\(75\) −55495.4 −1.13921
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 62370.8 1.12438 0.562190 0.827008i \(-0.309959\pi\)
0.562190 + 0.827008i \(0.309959\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 53221.5 0.847993 0.423996 0.905664i \(-0.360627\pi\)
0.423996 + 0.905664i \(0.360627\pi\)
\(84\) 0 0
\(85\) 136575. 2.05033
\(86\) 0 0
\(87\) 45027.9 0.637798
\(88\) 0 0
\(89\) −118682. −1.58822 −0.794108 0.607777i \(-0.792061\pi\)
−0.794108 + 0.607777i \(0.792061\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 66999.1 0.803271
\(94\) 0 0
\(95\) −124594. −1.41641
\(96\) 0 0
\(97\) −136608. −1.47416 −0.737081 0.675804i \(-0.763797\pi\)
−0.737081 + 0.675804i \(0.763797\pi\)
\(98\) 0 0
\(99\) −14540.8 −0.149108
\(100\) 0 0
\(101\) 12833.4 0.125181 0.0625903 0.998039i \(-0.480064\pi\)
0.0625903 + 0.998039i \(0.480064\pi\)
\(102\) 0 0
\(103\) 22369.4 0.207760 0.103880 0.994590i \(-0.466874\pi\)
0.103880 + 0.994590i \(0.466874\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 73061.1 0.616917 0.308459 0.951238i \(-0.400187\pi\)
0.308459 + 0.951238i \(0.400187\pi\)
\(108\) 0 0
\(109\) 27451.2 0.221307 0.110653 0.993859i \(-0.464706\pi\)
0.110653 + 0.993859i \(0.464706\pi\)
\(110\) 0 0
\(111\) 81728.1 0.629599
\(112\) 0 0
\(113\) −9821.49 −0.0723571 −0.0361786 0.999345i \(-0.511519\pi\)
−0.0361786 + 0.999345i \(0.511519\pi\)
\(114\) 0 0
\(115\) −450011. −3.17306
\(116\) 0 0
\(117\) −4606.85 −0.0311128
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −128825. −0.799902
\(122\) 0 0
\(123\) −59655.2 −0.355538
\(124\) 0 0
\(125\) 293139. 1.67803
\(126\) 0 0
\(127\) −216087. −1.18883 −0.594414 0.804159i \(-0.702616\pi\)
−0.594414 + 0.804159i \(0.702616\pi\)
\(128\) 0 0
\(129\) 116321. 0.615435
\(130\) 0 0
\(131\) −295522. −1.50457 −0.752284 0.658839i \(-0.771048\pi\)
−0.752284 + 0.658839i \(0.771048\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −70268.8 −0.331839
\(136\) 0 0
\(137\) 335551. 1.52742 0.763708 0.645562i \(-0.223377\pi\)
0.763708 + 0.645562i \(0.223377\pi\)
\(138\) 0 0
\(139\) 34781.8 0.152692 0.0763459 0.997081i \(-0.475675\pi\)
0.0763459 + 0.997081i \(0.475675\pi\)
\(140\) 0 0
\(141\) 49482.0 0.209604
\(142\) 0 0
\(143\) 10209.9 0.0417525
\(144\) 0 0
\(145\) −482252. −1.90482
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −166526. −0.614492 −0.307246 0.951630i \(-0.599407\pi\)
−0.307246 + 0.951630i \(0.599407\pi\)
\(150\) 0 0
\(151\) −480481. −1.71488 −0.857440 0.514585i \(-0.827946\pi\)
−0.857440 + 0.514585i \(0.827946\pi\)
\(152\) 0 0
\(153\) 114768. 0.396363
\(154\) 0 0
\(155\) −717566. −2.39901
\(156\) 0 0
\(157\) −598780. −1.93873 −0.969367 0.245618i \(-0.921009\pi\)
−0.969367 + 0.245618i \(0.921009\pi\)
\(158\) 0 0
\(159\) −265852. −0.833963
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 13667.1 0.0402909 0.0201455 0.999797i \(-0.493587\pi\)
0.0201455 + 0.999797i \(0.493587\pi\)
\(164\) 0 0
\(165\) 155733. 0.445318
\(166\) 0 0
\(167\) 3324.13 0.00922332 0.00461166 0.999989i \(-0.498532\pi\)
0.00461166 + 0.999989i \(0.498532\pi\)
\(168\) 0 0
\(169\) −368058. −0.991288
\(170\) 0 0
\(171\) −104700. −0.273815
\(172\) 0 0
\(173\) −287815. −0.731136 −0.365568 0.930785i \(-0.619125\pi\)
−0.365568 + 0.930785i \(0.619125\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −9526.55 −0.0228561
\(178\) 0 0
\(179\) −397283. −0.926760 −0.463380 0.886160i \(-0.653363\pi\)
−0.463380 + 0.886160i \(0.653363\pi\)
\(180\) 0 0
\(181\) 267931. 0.607891 0.303946 0.952689i \(-0.401696\pi\)
0.303946 + 0.952689i \(0.401696\pi\)
\(182\) 0 0
\(183\) −85390.7 −0.188488
\(184\) 0 0
\(185\) −875314. −1.88033
\(186\) 0 0
\(187\) −254355. −0.531907
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −595611. −1.18135 −0.590676 0.806909i \(-0.701139\pi\)
−0.590676 + 0.806909i \(0.701139\pi\)
\(192\) 0 0
\(193\) 900426. 1.74002 0.870011 0.493032i \(-0.164111\pi\)
0.870011 + 0.493032i \(0.164111\pi\)
\(194\) 0 0
\(195\) 49339.7 0.0929202
\(196\) 0 0
\(197\) 483809. 0.888195 0.444097 0.895978i \(-0.353524\pi\)
0.444097 + 0.895978i \(0.353524\pi\)
\(198\) 0 0
\(199\) 647610. 1.15926 0.579630 0.814880i \(-0.303197\pi\)
0.579630 + 0.814880i \(0.303197\pi\)
\(200\) 0 0
\(201\) −11979.3 −0.0209142
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 638912. 1.06183
\(206\) 0 0
\(207\) −378158. −0.613404
\(208\) 0 0
\(209\) 232041. 0.367451
\(210\) 0 0
\(211\) 1.24416e6 1.92384 0.961919 0.273333i \(-0.0881262\pi\)
0.961919 + 0.273333i \(0.0881262\pi\)
\(212\) 0 0
\(213\) −448301. −0.677049
\(214\) 0 0
\(215\) −1.24580e6 −1.83803
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 681825. 0.960644
\(220\) 0 0
\(221\) −80585.3 −0.110988
\(222\) 0 0
\(223\) 565408. 0.761377 0.380689 0.924703i \(-0.375687\pi\)
0.380689 + 0.924703i \(0.375687\pi\)
\(224\) 0 0
\(225\) 499459. 0.657724
\(226\) 0 0
\(227\) −1.35812e6 −1.74933 −0.874666 0.484726i \(-0.838919\pi\)
−0.874666 + 0.484726i \(0.838919\pi\)
\(228\) 0 0
\(229\) −1.06386e6 −1.34058 −0.670292 0.742098i \(-0.733831\pi\)
−0.670292 + 0.742098i \(0.733831\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 809030. 0.976281 0.488140 0.872765i \(-0.337675\pi\)
0.488140 + 0.872765i \(0.337675\pi\)
\(234\) 0 0
\(235\) −529956. −0.625994
\(236\) 0 0
\(237\) −561337. −0.649161
\(238\) 0 0
\(239\) 290751. 0.329251 0.164625 0.986356i \(-0.447358\pi\)
0.164625 + 0.986356i \(0.447358\pi\)
\(240\) 0 0
\(241\) −159098. −0.176450 −0.0882248 0.996101i \(-0.528119\pi\)
−0.0882248 + 0.996101i \(0.528119\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 73515.9 0.0766724
\(248\) 0 0
\(249\) −478994. −0.489589
\(250\) 0 0
\(251\) 104144. 0.104340 0.0521699 0.998638i \(-0.483386\pi\)
0.0521699 + 0.998638i \(0.483386\pi\)
\(252\) 0 0
\(253\) 838090. 0.823170
\(254\) 0 0
\(255\) −1.22918e6 −1.18376
\(256\) 0 0
\(257\) 880928. 0.831970 0.415985 0.909372i \(-0.363437\pi\)
0.415985 + 0.909372i \(0.363437\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −405251. −0.368233
\(262\) 0 0
\(263\) 1.80154e6 1.60603 0.803015 0.595959i \(-0.203228\pi\)
0.803015 + 0.595959i \(0.203228\pi\)
\(264\) 0 0
\(265\) 2.84729e6 2.49068
\(266\) 0 0
\(267\) 1.06814e6 0.916957
\(268\) 0 0
\(269\) 1.05044e6 0.885095 0.442548 0.896745i \(-0.354075\pi\)
0.442548 + 0.896745i \(0.354075\pi\)
\(270\) 0 0
\(271\) −1.23127e6 −1.01842 −0.509212 0.860641i \(-0.670063\pi\)
−0.509212 + 0.860641i \(0.670063\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.10692e6 −0.882645
\(276\) 0 0
\(277\) −873312. −0.683864 −0.341932 0.939725i \(-0.611081\pi\)
−0.341932 + 0.939725i \(0.611081\pi\)
\(278\) 0 0
\(279\) −602992. −0.463768
\(280\) 0 0
\(281\) −1.90392e6 −1.43841 −0.719204 0.694799i \(-0.755493\pi\)
−0.719204 + 0.694799i \(0.755493\pi\)
\(282\) 0 0
\(283\) 1.89580e6 1.40710 0.703551 0.710644i \(-0.251596\pi\)
0.703551 + 0.710644i \(0.251596\pi\)
\(284\) 0 0
\(285\) 1.12135e6 0.817763
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 587725. 0.413933
\(290\) 0 0
\(291\) 1.22947e6 0.851108
\(292\) 0 0
\(293\) −1.85424e6 −1.26182 −0.630908 0.775858i \(-0.717317\pi\)
−0.630908 + 0.775858i \(0.717317\pi\)
\(294\) 0 0
\(295\) 102030. 0.0682611
\(296\) 0 0
\(297\) 130867. 0.0860874
\(298\) 0 0
\(299\) 265526. 0.171763
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −115500. −0.0722730
\(304\) 0 0
\(305\) 914541. 0.562929
\(306\) 0 0
\(307\) −1.66209e6 −1.00649 −0.503245 0.864144i \(-0.667861\pi\)
−0.503245 + 0.864144i \(0.667861\pi\)
\(308\) 0 0
\(309\) −201325. −0.119950
\(310\) 0 0
\(311\) −1.90632e6 −1.11762 −0.558811 0.829295i \(-0.688742\pi\)
−0.558811 + 0.829295i \(0.688742\pi\)
\(312\) 0 0
\(313\) −1.33752e6 −0.771683 −0.385841 0.922565i \(-0.626089\pi\)
−0.385841 + 0.922565i \(0.626089\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.34837e6 −1.87148 −0.935741 0.352689i \(-0.885267\pi\)
−0.935741 + 0.352689i \(0.885267\pi\)
\(318\) 0 0
\(319\) 898135. 0.494157
\(320\) 0 0
\(321\) −657550. −0.356177
\(322\) 0 0
\(323\) −1.83147e6 −0.976771
\(324\) 0 0
\(325\) −350699. −0.184173
\(326\) 0 0
\(327\) −247061. −0.127772
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.60437e6 −0.804889 −0.402444 0.915444i \(-0.631839\pi\)
−0.402444 + 0.915444i \(0.631839\pi\)
\(332\) 0 0
\(333\) −735553. −0.363499
\(334\) 0 0
\(335\) 128299. 0.0624614
\(336\) 0 0
\(337\) −1.93575e6 −0.928483 −0.464242 0.885709i \(-0.653673\pi\)
−0.464242 + 0.885709i \(0.653673\pi\)
\(338\) 0 0
\(339\) 88393.4 0.0417754
\(340\) 0 0
\(341\) 1.33638e6 0.622363
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 4.05010e6 1.83197
\(346\) 0 0
\(347\) 42619.3 0.0190013 0.00950064 0.999955i \(-0.496976\pi\)
0.00950064 + 0.999955i \(0.496976\pi\)
\(348\) 0 0
\(349\) 2.12211e6 0.932618 0.466309 0.884622i \(-0.345584\pi\)
0.466309 + 0.884622i \(0.345584\pi\)
\(350\) 0 0
\(351\) 41461.7 0.0179630
\(352\) 0 0
\(353\) 138714. 0.0592492 0.0296246 0.999561i \(-0.490569\pi\)
0.0296246 + 0.999561i \(0.490569\pi\)
\(354\) 0 0
\(355\) 4.80133e6 2.02205
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.27021e6 −1.33918 −0.669592 0.742729i \(-0.733531\pi\)
−0.669592 + 0.742729i \(0.733531\pi\)
\(360\) 0 0
\(361\) −805298. −0.325229
\(362\) 0 0
\(363\) 1.15943e6 0.461824
\(364\) 0 0
\(365\) −7.30239e6 −2.86902
\(366\) 0 0
\(367\) 4.91951e6 1.90659 0.953294 0.302043i \(-0.0976686\pi\)
0.953294 + 0.302043i \(0.0976686\pi\)
\(368\) 0 0
\(369\) 536897. 0.205270
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.28061e6 0.476589 0.238295 0.971193i \(-0.423412\pi\)
0.238295 + 0.971193i \(0.423412\pi\)
\(374\) 0 0
\(375\) −2.63825e6 −0.968810
\(376\) 0 0
\(377\) 284550. 0.103111
\(378\) 0 0
\(379\) 2.54359e6 0.909596 0.454798 0.890595i \(-0.349711\pi\)
0.454798 + 0.890595i \(0.349711\pi\)
\(380\) 0 0
\(381\) 1.94478e6 0.686370
\(382\) 0 0
\(383\) −112734. −0.0392697 −0.0196348 0.999807i \(-0.506250\pi\)
−0.0196348 + 0.999807i \(0.506250\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.04689e6 −0.355322
\(388\) 0 0
\(389\) −1.33653e6 −0.447820 −0.223910 0.974610i \(-0.571882\pi\)
−0.223910 + 0.974610i \(0.571882\pi\)
\(390\) 0 0
\(391\) −6.61492e6 −2.18818
\(392\) 0 0
\(393\) 2.65970e6 0.868663
\(394\) 0 0
\(395\) 6.01196e6 1.93876
\(396\) 0 0
\(397\) 3.96291e6 1.26194 0.630968 0.775809i \(-0.282658\pi\)
0.630968 + 0.775809i \(0.282658\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.05395e6 0.948419 0.474210 0.880412i \(-0.342734\pi\)
0.474210 + 0.880412i \(0.342734\pi\)
\(402\) 0 0
\(403\) 423395. 0.129862
\(404\) 0 0
\(405\) 632419. 0.191588
\(406\) 0 0
\(407\) 1.63017e6 0.487805
\(408\) 0 0
\(409\) −4.42448e6 −1.30784 −0.653920 0.756564i \(-0.726877\pi\)
−0.653920 + 0.756564i \(0.726877\pi\)
\(410\) 0 0
\(411\) −3.01996e6 −0.881854
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 5.13006e6 1.46218
\(416\) 0 0
\(417\) −313037. −0.0881566
\(418\) 0 0
\(419\) −2.02795e6 −0.564315 −0.282158 0.959368i \(-0.591050\pi\)
−0.282158 + 0.959368i \(0.591050\pi\)
\(420\) 0 0
\(421\) 6.64038e6 1.82595 0.912973 0.408020i \(-0.133781\pi\)
0.912973 + 0.408020i \(0.133781\pi\)
\(422\) 0 0
\(423\) −445338. −0.121015
\(424\) 0 0
\(425\) 8.73678e6 2.34628
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −91889.3 −0.0241058
\(430\) 0 0
\(431\) 3.76085e6 0.975198 0.487599 0.873068i \(-0.337873\pi\)
0.487599 + 0.873068i \(0.337873\pi\)
\(432\) 0 0
\(433\) −3.47031e6 −0.889505 −0.444753 0.895653i \(-0.646708\pi\)
−0.444753 + 0.895653i \(0.646708\pi\)
\(434\) 0 0
\(435\) 4.34027e6 1.09975
\(436\) 0 0
\(437\) 6.03462e6 1.51163
\(438\) 0 0
\(439\) 6.25398e6 1.54880 0.774399 0.632697i \(-0.218052\pi\)
0.774399 + 0.632697i \(0.218052\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −410688. −0.0994265 −0.0497133 0.998764i \(-0.515831\pi\)
−0.0497133 + 0.998764i \(0.515831\pi\)
\(444\) 0 0
\(445\) −1.14398e7 −2.73854
\(446\) 0 0
\(447\) 1.49873e6 0.354777
\(448\) 0 0
\(449\) −3.55144e6 −0.831359 −0.415680 0.909511i \(-0.636456\pi\)
−0.415680 + 0.909511i \(0.636456\pi\)
\(450\) 0 0
\(451\) −1.18990e6 −0.275466
\(452\) 0 0
\(453\) 4.32433e6 0.990086
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.49553e6 1.45487 0.727435 0.686177i \(-0.240712\pi\)
0.727435 + 0.686177i \(0.240712\pi\)
\(458\) 0 0
\(459\) −1.03291e6 −0.228840
\(460\) 0 0
\(461\) 7.57960e6 1.66109 0.830546 0.556950i \(-0.188028\pi\)
0.830546 + 0.556950i \(0.188028\pi\)
\(462\) 0 0
\(463\) 382670. 0.0829607 0.0414803 0.999139i \(-0.486793\pi\)
0.0414803 + 0.999139i \(0.486793\pi\)
\(464\) 0 0
\(465\) 6.45809e6 1.38507
\(466\) 0 0
\(467\) −6.50195e6 −1.37959 −0.689797 0.724003i \(-0.742300\pi\)
−0.689797 + 0.724003i \(0.742300\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5.38902e6 1.11933
\(472\) 0 0
\(473\) 2.32016e6 0.476831
\(474\) 0 0
\(475\) −7.97034e6 −1.62085
\(476\) 0 0
\(477\) 2.39267e6 0.481489
\(478\) 0 0
\(479\) 4.21928e6 0.840234 0.420117 0.907470i \(-0.361989\pi\)
0.420117 + 0.907470i \(0.361989\pi\)
\(480\) 0 0
\(481\) 516474. 0.101785
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.31677e7 −2.54188
\(486\) 0 0
\(487\) 2.54734e6 0.486704 0.243352 0.969938i \(-0.421753\pi\)
0.243352 + 0.969938i \(0.421753\pi\)
\(488\) 0 0
\(489\) −123004. −0.0232620
\(490\) 0 0
\(491\) −6.76516e6 −1.26641 −0.633205 0.773984i \(-0.718261\pi\)
−0.633205 + 0.773984i \(0.718261\pi\)
\(492\) 0 0
\(493\) −7.08885e6 −1.31359
\(494\) 0 0
\(495\) −1.40160e6 −0.257105
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.17337e6 0.750300 0.375150 0.926964i \(-0.377591\pi\)
0.375150 + 0.926964i \(0.377591\pi\)
\(500\) 0 0
\(501\) −29917.2 −0.00532508
\(502\) 0 0
\(503\) −1.07179e7 −1.88881 −0.944406 0.328781i \(-0.893362\pi\)
−0.944406 + 0.328781i \(0.893362\pi\)
\(504\) 0 0
\(505\) 1.23702e6 0.215847
\(506\) 0 0
\(507\) 3.31252e6 0.572320
\(508\) 0 0
\(509\) 6.03626e6 1.03270 0.516349 0.856378i \(-0.327291\pi\)
0.516349 + 0.856378i \(0.327291\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 942301. 0.158087
\(514\) 0 0
\(515\) 2.15620e6 0.358238
\(516\) 0 0
\(517\) 986979. 0.162398
\(518\) 0 0
\(519\) 2.59034e6 0.422122
\(520\) 0 0
\(521\) 2.27593e6 0.367337 0.183669 0.982988i \(-0.441203\pi\)
0.183669 + 0.982988i \(0.441203\pi\)
\(522\) 0 0
\(523\) 6.74220e6 1.07782 0.538911 0.842362i \(-0.318836\pi\)
0.538911 + 0.842362i \(0.318836\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.05478e7 −1.65439
\(528\) 0 0
\(529\) 1.53596e7 2.38638
\(530\) 0 0
\(531\) 85739.0 0.0131960
\(532\) 0 0
\(533\) −376986. −0.0574787
\(534\) 0 0
\(535\) 7.04241e6 1.06374
\(536\) 0 0
\(537\) 3.57555e6 0.535065
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.17845e7 −1.73108 −0.865541 0.500838i \(-0.833025\pi\)
−0.865541 + 0.500838i \(0.833025\pi\)
\(542\) 0 0
\(543\) −2.41138e6 −0.350966
\(544\) 0 0
\(545\) 2.64604e6 0.381597
\(546\) 0 0
\(547\) 2.46712e6 0.352551 0.176275 0.984341i \(-0.443595\pi\)
0.176275 + 0.984341i \(0.443595\pi\)
\(548\) 0 0
\(549\) 768516. 0.108823
\(550\) 0 0
\(551\) 6.46697e6 0.907449
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 7.87783e6 1.08561
\(556\) 0 0
\(557\) 6.65458e6 0.908829 0.454415 0.890790i \(-0.349848\pi\)
0.454415 + 0.890790i \(0.349848\pi\)
\(558\) 0 0
\(559\) 735078. 0.0994956
\(560\) 0 0
\(561\) 2.28919e6 0.307097
\(562\) 0 0
\(563\) 3.12246e6 0.415170 0.207585 0.978217i \(-0.433440\pi\)
0.207585 + 0.978217i \(0.433440\pi\)
\(564\) 0 0
\(565\) −946700. −0.124765
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4.20578e6 −0.544585 −0.272293 0.962214i \(-0.587782\pi\)
−0.272293 + 0.962214i \(0.587782\pi\)
\(570\) 0 0
\(571\) −4.71461e6 −0.605140 −0.302570 0.953127i \(-0.597845\pi\)
−0.302570 + 0.953127i \(0.597845\pi\)
\(572\) 0 0
\(573\) 5.36050e6 0.682054
\(574\) 0 0
\(575\) −2.87874e7 −3.63106
\(576\) 0 0
\(577\) 258113. 0.0322753 0.0161376 0.999870i \(-0.494863\pi\)
0.0161376 + 0.999870i \(0.494863\pi\)
\(578\) 0 0
\(579\) −8.10384e6 −1.00460
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −5.30274e6 −0.646143
\(584\) 0 0
\(585\) −444057. −0.0536475
\(586\) 0 0
\(587\) 7.33876e6 0.879078 0.439539 0.898224i \(-0.355142\pi\)
0.439539 + 0.898224i \(0.355142\pi\)
\(588\) 0 0
\(589\) 9.62252e6 1.14288
\(590\) 0 0
\(591\) −4.35428e6 −0.512800
\(592\) 0 0
\(593\) 162794. 0.0190108 0.00950542 0.999955i \(-0.496974\pi\)
0.00950542 + 0.999955i \(0.496974\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5.82849e6 −0.669299
\(598\) 0 0
\(599\) 9.51587e6 1.08363 0.541815 0.840498i \(-0.317737\pi\)
0.541815 + 0.840498i \(0.317737\pi\)
\(600\) 0 0
\(601\) 6.14487e6 0.693947 0.346974 0.937875i \(-0.387209\pi\)
0.346974 + 0.937875i \(0.387209\pi\)
\(602\) 0 0
\(603\) 107814. 0.0120748
\(604\) 0 0
\(605\) −1.24175e7 −1.37926
\(606\) 0 0
\(607\) −7.34089e6 −0.808681 −0.404341 0.914609i \(-0.632499\pi\)
−0.404341 + 0.914609i \(0.632499\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 312697. 0.0338861
\(612\) 0 0
\(613\) −3.51721e6 −0.378048 −0.189024 0.981973i \(-0.560532\pi\)
−0.189024 + 0.981973i \(0.560532\pi\)
\(614\) 0 0
\(615\) −5.75020e6 −0.613049
\(616\) 0 0
\(617\) −6.95703e6 −0.735717 −0.367859 0.929882i \(-0.619909\pi\)
−0.367859 + 0.929882i \(0.619909\pi\)
\(618\) 0 0
\(619\) 6.47022e6 0.678723 0.339361 0.940656i \(-0.389789\pi\)
0.339361 + 0.940656i \(0.389789\pi\)
\(620\) 0 0
\(621\) 3.40342e6 0.354149
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 8.98665e6 0.920233
\(626\) 0 0
\(627\) −2.08837e6 −0.212148
\(628\) 0 0
\(629\) −1.28667e7 −1.29670
\(630\) 0 0
\(631\) 591973. 0.0591873 0.0295936 0.999562i \(-0.490579\pi\)
0.0295936 + 0.999562i \(0.490579\pi\)
\(632\) 0 0
\(633\) −1.11974e7 −1.11073
\(634\) 0 0
\(635\) −2.08287e7 −2.04988
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 4.03471e6 0.390895
\(640\) 0 0
\(641\) 1.20679e7 1.16007 0.580037 0.814590i \(-0.303038\pi\)
0.580037 + 0.814590i \(0.303038\pi\)
\(642\) 0 0
\(643\) −4.48967e6 −0.428240 −0.214120 0.976807i \(-0.568688\pi\)
−0.214120 + 0.976807i \(0.568688\pi\)
\(644\) 0 0
\(645\) 1.12122e7 1.06119
\(646\) 0 0
\(647\) −1.15701e7 −1.08662 −0.543309 0.839533i \(-0.682829\pi\)
−0.543309 + 0.839533i \(0.682829\pi\)
\(648\) 0 0
\(649\) −190019. −0.0177086
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.33400e7 −1.22426 −0.612129 0.790758i \(-0.709687\pi\)
−0.612129 + 0.790758i \(0.709687\pi\)
\(654\) 0 0
\(655\) −2.84856e7 −2.59431
\(656\) 0 0
\(657\) −6.13642e6 −0.554628
\(658\) 0 0
\(659\) 3.85674e6 0.345945 0.172972 0.984927i \(-0.444663\pi\)
0.172972 + 0.984927i \(0.444663\pi\)
\(660\) 0 0
\(661\) 5.07023e6 0.451361 0.225680 0.974201i \(-0.427539\pi\)
0.225680 + 0.974201i \(0.427539\pi\)
\(662\) 0 0
\(663\) 725268. 0.0640788
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.33575e7 2.03288
\(668\) 0 0
\(669\) −5.08867e6 −0.439581
\(670\) 0 0
\(671\) −1.70322e6 −0.146038
\(672\) 0 0
\(673\) 8.50347e6 0.723700 0.361850 0.932236i \(-0.382145\pi\)
0.361850 + 0.932236i \(0.382145\pi\)
\(674\) 0 0
\(675\) −4.49513e6 −0.379737
\(676\) 0 0
\(677\) 1.05704e7 0.886383 0.443192 0.896427i \(-0.353846\pi\)
0.443192 + 0.896427i \(0.353846\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.22230e7 1.00998
\(682\) 0 0
\(683\) −4.81908e6 −0.395287 −0.197643 0.980274i \(-0.563329\pi\)
−0.197643 + 0.980274i \(0.563329\pi\)
\(684\) 0 0
\(685\) 3.23440e7 2.63371
\(686\) 0 0
\(687\) 9.57470e6 0.773986
\(688\) 0 0
\(689\) −1.68003e6 −0.134824
\(690\) 0 0
\(691\) −1.75621e7 −1.39920 −0.699602 0.714533i \(-0.746639\pi\)
−0.699602 + 0.714533i \(0.746639\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.35264e6 0.263285
\(696\) 0 0
\(697\) 9.39166e6 0.732252
\(698\) 0 0
\(699\) −7.28127e6 −0.563656
\(700\) 0 0
\(701\) 9.94577e6 0.764440 0.382220 0.924071i \(-0.375160\pi\)
0.382220 + 0.924071i \(0.375160\pi\)
\(702\) 0 0
\(703\) 1.17379e7 0.895784
\(704\) 0 0
\(705\) 4.76961e6 0.361418
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8.99017e6 0.671664 0.335832 0.941922i \(-0.390982\pi\)
0.335832 + 0.941922i \(0.390982\pi\)
\(710\) 0 0
\(711\) 5.05203e6 0.374793
\(712\) 0 0
\(713\) 3.47548e7 2.56030
\(714\) 0 0
\(715\) 984141. 0.0719933
\(716\) 0 0
\(717\) −2.61676e6 −0.190093
\(718\) 0 0
\(719\) −2.13270e7 −1.53854 −0.769270 0.638924i \(-0.779380\pi\)
−0.769270 + 0.638924i \(0.779380\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.43188e6 0.101873
\(724\) 0 0
\(725\) −3.08499e7 −2.17976
\(726\) 0 0
\(727\) −1.47016e6 −0.103164 −0.0515819 0.998669i \(-0.516426\pi\)
−0.0515819 + 0.998669i \(0.516426\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −1.83126e7 −1.26753
\(732\) 0 0
\(733\) −1.96893e7 −1.35354 −0.676770 0.736194i \(-0.736621\pi\)
−0.676770 + 0.736194i \(0.736621\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −238941. −0.0162040
\(738\) 0 0
\(739\) 3.29227e6 0.221761 0.110880 0.993834i \(-0.464633\pi\)
0.110880 + 0.993834i \(0.464633\pi\)
\(740\) 0 0
\(741\) −661644. −0.0442668
\(742\) 0 0
\(743\) −2.05711e6 −0.136705 −0.0683527 0.997661i \(-0.521774\pi\)
−0.0683527 + 0.997661i \(0.521774\pi\)
\(744\) 0 0
\(745\) −1.60515e7 −1.05956
\(746\) 0 0
\(747\) 4.31094e6 0.282664
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −2.39547e6 −0.154985 −0.0774927 0.996993i \(-0.524691\pi\)
−0.0774927 + 0.996993i \(0.524691\pi\)
\(752\) 0 0
\(753\) −937296. −0.0602406
\(754\) 0 0
\(755\) −4.63138e7 −2.95695
\(756\) 0 0
\(757\) 7.29250e6 0.462527 0.231263 0.972891i \(-0.425714\pi\)
0.231263 + 0.972891i \(0.425714\pi\)
\(758\) 0 0
\(759\) −7.54281e6 −0.475257
\(760\) 0 0
\(761\) 233537. 0.0146182 0.00730910 0.999973i \(-0.497673\pi\)
0.00730910 + 0.999973i \(0.497673\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.10626e7 0.683444
\(766\) 0 0
\(767\) −60202.2 −0.00369508
\(768\) 0 0
\(769\) 2.95723e7 1.80331 0.901654 0.432458i \(-0.142354\pi\)
0.901654 + 0.432458i \(0.142354\pi\)
\(770\) 0 0
\(771\) −7.92835e6 −0.480338
\(772\) 0 0
\(773\) −1.33291e7 −0.802327 −0.401164 0.916006i \(-0.631394\pi\)
−0.401164 + 0.916006i \(0.631394\pi\)
\(774\) 0 0
\(775\) −4.59030e7 −2.74528
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.56778e6 −0.505853
\(780\) 0 0
\(781\) −8.94190e6 −0.524569
\(782\) 0 0
\(783\) 3.64726e6 0.212599
\(784\) 0 0
\(785\) −5.77168e7 −3.34294
\(786\) 0 0
\(787\) −9.63918e6 −0.554758 −0.277379 0.960761i \(-0.589466\pi\)
−0.277379 + 0.960761i \(0.589466\pi\)
\(788\) 0 0
\(789\) −1.62138e7 −0.927241
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −539619. −0.0304722
\(794\) 0 0
\(795\) −2.56256e7 −1.43799
\(796\) 0 0
\(797\) 1.06108e7 0.591699 0.295850 0.955235i \(-0.404397\pi\)
0.295850 + 0.955235i \(0.404397\pi\)
\(798\) 0 0
\(799\) −7.79008e6 −0.431693
\(800\) 0 0
\(801\) −9.61323e6 −0.529405
\(802\) 0 0
\(803\) 1.35998e7 0.744294
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −9.45395e6 −0.511010
\(808\) 0 0
\(809\) 1.70209e7 0.914350 0.457175 0.889377i \(-0.348861\pi\)
0.457175 + 0.889377i \(0.348861\pi\)
\(810\) 0 0
\(811\) 4.79571e6 0.256036 0.128018 0.991772i \(-0.459139\pi\)
0.128018 + 0.991772i \(0.459139\pi\)
\(812\) 0 0
\(813\) 1.10814e7 0.587987
\(814\) 0 0
\(815\) 1.31738e6 0.0694732
\(816\) 0 0
\(817\) 1.67062e7 0.875631
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.24534e7 −0.644809 −0.322404 0.946602i \(-0.604491\pi\)
−0.322404 + 0.946602i \(0.604491\pi\)
\(822\) 0 0
\(823\) 3.59326e7 1.84922 0.924610 0.380914i \(-0.124391\pi\)
0.924610 + 0.380914i \(0.124391\pi\)
\(824\) 0 0
\(825\) 9.96232e6 0.509595
\(826\) 0 0
\(827\) 1.39273e7 0.708112 0.354056 0.935224i \(-0.384802\pi\)
0.354056 + 0.935224i \(0.384802\pi\)
\(828\) 0 0
\(829\) −8.83660e6 −0.446580 −0.223290 0.974752i \(-0.571680\pi\)
−0.223290 + 0.974752i \(0.571680\pi\)
\(830\) 0 0
\(831\) 7.85981e6 0.394829
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 320415. 0.0159037
\(836\) 0 0
\(837\) 5.42693e6 0.267757
\(838\) 0 0
\(839\) 3.34486e7 1.64049 0.820244 0.572014i \(-0.193838\pi\)
0.820244 + 0.572014i \(0.193838\pi\)
\(840\) 0 0
\(841\) 4.51982e6 0.220359
\(842\) 0 0
\(843\) 1.71352e7 0.830465
\(844\) 0 0
\(845\) −3.54774e7 −1.70927
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.70622e7 −0.812391
\(850\) 0 0
\(851\) 4.23952e7 2.00675
\(852\) 0 0
\(853\) −4.28936e6 −0.201846 −0.100923 0.994894i \(-0.532180\pi\)
−0.100923 + 0.994894i \(0.532180\pi\)
\(854\) 0 0
\(855\) −1.00921e7 −0.472136
\(856\) 0 0
\(857\) −3.88960e7 −1.80906 −0.904529 0.426411i \(-0.859778\pi\)
−0.904529 + 0.426411i \(0.859778\pi\)
\(858\) 0 0
\(859\) 1.58855e6 0.0734546 0.0367273 0.999325i \(-0.488307\pi\)
0.0367273 + 0.999325i \(0.488307\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.41298e7 −0.645815 −0.322907 0.946431i \(-0.604660\pi\)
−0.322907 + 0.946431i \(0.604660\pi\)
\(864\) 0 0
\(865\) −2.77427e7 −1.26069
\(866\) 0 0
\(867\) −5.28953e6 −0.238984
\(868\) 0 0
\(869\) −1.11965e7 −0.502961
\(870\) 0 0
\(871\) −75702.1 −0.00338113
\(872\) 0 0
\(873\) −1.10652e7 −0.491388
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −3.66989e7 −1.61122 −0.805609 0.592448i \(-0.798162\pi\)
−0.805609 + 0.592448i \(0.798162\pi\)
\(878\) 0 0
\(879\) 1.66881e7 0.728510
\(880\) 0 0
\(881\) −1.58408e7 −0.687602 −0.343801 0.939043i \(-0.611715\pi\)
−0.343801 + 0.939043i \(0.611715\pi\)
\(882\) 0 0
\(883\) −2.18500e6 −0.0943083 −0.0471542 0.998888i \(-0.515015\pi\)
−0.0471542 + 0.998888i \(0.515015\pi\)
\(884\) 0 0
\(885\) −918271. −0.0394105
\(886\) 0 0
\(887\) −3.25170e7 −1.38772 −0.693860 0.720110i \(-0.744092\pi\)
−0.693860 + 0.720110i \(0.744092\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.17780e6 −0.0497026
\(892\) 0 0
\(893\) 7.10669e6 0.298221
\(894\) 0 0
\(895\) −3.82944e7 −1.59800
\(896\) 0 0
\(897\) −2.38973e6 −0.0991673
\(898\) 0 0
\(899\) 3.72448e7 1.53697
\(900\) 0 0
\(901\) 4.18537e7 1.71760
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.58260e7 1.04818
\(906\) 0 0
\(907\) −3.42544e6 −0.138261 −0.0691303 0.997608i \(-0.522022\pi\)
−0.0691303 + 0.997608i \(0.522022\pi\)
\(908\) 0 0
\(909\) 1.03950e6 0.0417269
\(910\) 0 0
\(911\) 6.40379e6 0.255647 0.127824 0.991797i \(-0.459201\pi\)
0.127824 + 0.991797i \(0.459201\pi\)
\(912\) 0 0
\(913\) −9.55411e6 −0.379327
\(914\) 0 0
\(915\) −8.23087e6 −0.325007
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −6.40524e6 −0.250176 −0.125088 0.992146i \(-0.539921\pi\)
−0.125088 + 0.992146i \(0.539921\pi\)
\(920\) 0 0
\(921\) 1.49588e7 0.581098
\(922\) 0 0
\(923\) −2.83300e6 −0.109457
\(924\) 0 0
\(925\) −5.59943e7 −2.15174
\(926\) 0 0
\(927\) 1.81192e6 0.0692532
\(928\) 0 0
\(929\) 1.93314e7 0.734892 0.367446 0.930045i \(-0.380232\pi\)
0.367446 + 0.930045i \(0.380232\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.71569e7 0.645259
\(934\) 0 0
\(935\) −2.45174e7 −0.917161
\(936\) 0 0
\(937\) −4.35617e7 −1.62090 −0.810449 0.585809i \(-0.800777\pi\)
−0.810449 + 0.585809i \(0.800777\pi\)
\(938\) 0 0
\(939\) 1.20377e7 0.445531
\(940\) 0 0
\(941\) 1.43051e7 0.526644 0.263322 0.964708i \(-0.415182\pi\)
0.263322 + 0.964708i \(0.415182\pi\)
\(942\) 0 0
\(943\) −3.09452e7 −1.13322
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.14953e7 −1.50357 −0.751785 0.659408i \(-0.770807\pi\)
−0.751785 + 0.659408i \(0.770807\pi\)
\(948\) 0 0
\(949\) 4.30873e6 0.155304
\(950\) 0 0
\(951\) 3.01353e7 1.08050
\(952\) 0 0
\(953\) 3.74252e7 1.33485 0.667424 0.744678i \(-0.267397\pi\)
0.667424 + 0.744678i \(0.267397\pi\)
\(954\) 0 0
\(955\) −5.74114e7 −2.03699
\(956\) 0 0
\(957\) −8.08322e6 −0.285302
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 2.67892e7 0.935731
\(962\) 0 0
\(963\) 5.91795e6 0.205639
\(964\) 0 0
\(965\) 8.67927e7 3.00030
\(966\) 0 0
\(967\) 4.22935e7 1.45448 0.727240 0.686383i \(-0.240803\pi\)
0.727240 + 0.686383i \(0.240803\pi\)
\(968\) 0 0
\(969\) 1.64832e7 0.563939
\(970\) 0 0
\(971\) −2.51595e7 −0.856355 −0.428178 0.903695i \(-0.640844\pi\)
−0.428178 + 0.903695i \(0.640844\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 3.15629e6 0.106332
\(976\) 0 0
\(977\) −3.40511e7 −1.14129 −0.570643 0.821198i \(-0.693306\pi\)
−0.570643 + 0.821198i \(0.693306\pi\)
\(978\) 0 0
\(979\) 2.13053e7 0.710446
\(980\) 0 0
\(981\) 2.22354e6 0.0737689
\(982\) 0 0
\(983\) 2.51350e7 0.829649 0.414824 0.909902i \(-0.363843\pi\)
0.414824 + 0.909902i \(0.363843\pi\)
\(984\) 0 0
\(985\) 4.66347e7 1.53150
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.03395e7 1.96160
\(990\) 0 0
\(991\) 2.38236e7 0.770589 0.385294 0.922794i \(-0.374100\pi\)
0.385294 + 0.922794i \(0.374100\pi\)
\(992\) 0 0
\(993\) 1.44394e7 0.464703
\(994\) 0 0
\(995\) 6.24235e7 1.99890
\(996\) 0 0
\(997\) 9.07764e6 0.289224 0.144612 0.989488i \(-0.453807\pi\)
0.144612 + 0.989488i \(0.453807\pi\)
\(998\) 0 0
\(999\) 6.61998e6 0.209866
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.6.a.i.1.2 2
7.2 even 3 588.6.i.k.361.1 4
7.3 odd 6 588.6.i.j.373.2 4
7.4 even 3 588.6.i.k.373.1 4
7.5 odd 6 588.6.i.j.361.2 4
7.6 odd 2 588.6.a.j.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.6.a.i.1.2 2 1.1 even 1 trivial
588.6.a.j.1.1 yes 2 7.6 odd 2
588.6.i.j.361.2 4 7.5 odd 6
588.6.i.j.373.2 4 7.3 odd 6
588.6.i.k.361.1 4 7.2 even 3
588.6.i.k.373.1 4 7.4 even 3