Properties

Label 2-588-1.1-c7-0-37
Degree $2$
Conductor $588$
Sign $-1$
Analytic cond. $183.682$
Root an. cond. $13.5529$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27·3-s + 451.·5-s + 729·9-s − 8.08e3·11-s + 3.48e3·13-s − 1.22e4·15-s + 1.54e4·17-s + 3.68e4·19-s − 6.12e4·23-s + 1.26e5·25-s − 1.96e4·27-s − 2.50e5·29-s + 1.22e5·31-s + 2.18e5·33-s + 1.20e5·37-s − 9.41e4·39-s − 3.95e5·41-s + 3.78e5·43-s + 3.29e5·45-s − 6.69e5·47-s − 4.16e5·51-s − 2.11e6·53-s − 3.65e6·55-s − 9.95e5·57-s + 9.87e5·59-s + 2.20e6·61-s + 1.57e6·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.61·5-s + 0.333·9-s − 1.83·11-s + 0.440·13-s − 0.933·15-s + 0.761·17-s + 1.23·19-s − 1.04·23-s + 1.61·25-s − 0.192·27-s − 1.90·29-s + 0.738·31-s + 1.05·33-s + 0.392·37-s − 0.254·39-s − 0.895·41-s + 0.726·43-s + 0.539·45-s − 0.941·47-s − 0.439·51-s − 1.95·53-s − 2.96·55-s − 0.711·57-s + 0.625·59-s + 1.24·61-s + 0.712·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(183.682\)
Root analytic conductor: \(13.5529\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 588,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 27T \)
7 \( 1 \)
good5 \( 1 - 451.T + 7.81e4T^{2} \)
11 \( 1 + 8.08e3T + 1.94e7T^{2} \)
13 \( 1 - 3.48e3T + 6.27e7T^{2} \)
17 \( 1 - 1.54e4T + 4.10e8T^{2} \)
19 \( 1 - 3.68e4T + 8.93e8T^{2} \)
23 \( 1 + 6.12e4T + 3.40e9T^{2} \)
29 \( 1 + 2.50e5T + 1.72e10T^{2} \)
31 \( 1 - 1.22e5T + 2.75e10T^{2} \)
37 \( 1 - 1.20e5T + 9.49e10T^{2} \)
41 \( 1 + 3.95e5T + 1.94e11T^{2} \)
43 \( 1 - 3.78e5T + 2.71e11T^{2} \)
47 \( 1 + 6.69e5T + 5.06e11T^{2} \)
53 \( 1 + 2.11e6T + 1.17e12T^{2} \)
59 \( 1 - 9.87e5T + 2.48e12T^{2} \)
61 \( 1 - 2.20e6T + 3.14e12T^{2} \)
67 \( 1 + 3.69e6T + 6.06e12T^{2} \)
71 \( 1 + 3.16e6T + 9.09e12T^{2} \)
73 \( 1 - 1.68e6T + 1.10e13T^{2} \)
79 \( 1 - 2.33e6T + 1.92e13T^{2} \)
83 \( 1 + 4.57e6T + 2.71e13T^{2} \)
89 \( 1 - 1.56e6T + 4.42e13T^{2} \)
97 \( 1 + 3.36e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.518114339383784548436758276229, −8.161010165732066188001420038728, −7.33792246931507690562366674668, −6.05041047751528113534470826438, −5.61056536480869848629615357216, −4.90805177792251365895784673782, −3.27288383844648136253063286263, −2.21363699216053876942986421223, −1.29623333818925859312105027083, 0, 1.29623333818925859312105027083, 2.21363699216053876942986421223, 3.27288383844648136253063286263, 4.90805177792251365895784673782, 5.61056536480869848629615357216, 6.05041047751528113534470826438, 7.33792246931507690562366674668, 8.161010165732066188001420038728, 9.518114339383784548436758276229

Graph of the $Z$-function along the critical line