Properties

Label 588.8.a.m.1.8
Level $588$
Weight $8$
Character 588.1
Self dual yes
Analytic conductor $183.682$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,8,Mod(1,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 588.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(183.682394985\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2 x^{7} - 20109 x^{6} - 684862 x^{5} + 88807787 x^{4} + 5739442252 x^{3} + 94265489852 x^{2} + \cdots - 3335964735712 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{17}\cdot 3^{4}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(91.7291\) of defining polynomial
Character \(\chi\) \(=\) 588.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.0000 q^{3} +451.992 q^{5} +729.000 q^{9} -8081.02 q^{11} +3487.92 q^{13} -12203.8 q^{15} +15434.2 q^{17} +36856.6 q^{19} -61237.4 q^{23} +126172. q^{25} -19683.0 q^{27} -250085. q^{29} +122535. q^{31} +218188. q^{33} +120983. q^{37} -94173.9 q^{39} -395217. q^{41} +378681. q^{43} +329502. q^{45} -669990. q^{47} -416723. q^{51} -2.11871e6 q^{53} -3.65256e6 q^{55} -995128. q^{57} +987048. q^{59} +2.20973e6 q^{61} +1.57651e6 q^{65} -3.69012e6 q^{67} +1.65341e6 q^{69} -3.16876e6 q^{71} +1.68346e6 q^{73} -3.40664e6 q^{75} +2.33267e6 q^{79} +531441. q^{81} -4.57725e6 q^{83} +6.97612e6 q^{85} +6.75230e6 q^{87} +1.56713e6 q^{89} -3.30845e6 q^{93} +1.66589e7 q^{95} -3.36078e6 q^{97} -5.89106e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 216 q^{3} + 5832 q^{9} - 41184 q^{17} + 17280 q^{19} - 24000 q^{23} + 161064 q^{25} - 157464 q^{27} - 137568 q^{29} - 194400 q^{31} + 120320 q^{37} - 635040 q^{41} + 666400 q^{43} - 1004832 q^{47}+ \cdots - 20236608 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −27.0000 −0.577350
\(4\) 0 0
\(5\) 451.992 1.61710 0.808548 0.588430i \(-0.200254\pi\)
0.808548 + 0.588430i \(0.200254\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) −8081.02 −1.83059 −0.915296 0.402781i \(-0.868044\pi\)
−0.915296 + 0.402781i \(0.868044\pi\)
\(12\) 0 0
\(13\) 3487.92 0.440316 0.220158 0.975464i \(-0.429343\pi\)
0.220158 + 0.975464i \(0.429343\pi\)
\(14\) 0 0
\(15\) −12203.8 −0.933631
\(16\) 0 0
\(17\) 15434.2 0.761925 0.380962 0.924591i \(-0.375593\pi\)
0.380962 + 0.924591i \(0.375593\pi\)
\(18\) 0 0
\(19\) 36856.6 1.23276 0.616379 0.787450i \(-0.288599\pi\)
0.616379 + 0.787450i \(0.288599\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −61237.4 −1.04947 −0.524734 0.851266i \(-0.675835\pi\)
−0.524734 + 0.851266i \(0.675835\pi\)
\(24\) 0 0
\(25\) 126172. 1.61500
\(26\) 0 0
\(27\) −19683.0 −0.192450
\(28\) 0 0
\(29\) −250085. −1.90412 −0.952062 0.305907i \(-0.901040\pi\)
−0.952062 + 0.305907i \(0.901040\pi\)
\(30\) 0 0
\(31\) 122535. 0.738746 0.369373 0.929281i \(-0.379573\pi\)
0.369373 + 0.929281i \(0.379573\pi\)
\(32\) 0 0
\(33\) 218188. 1.05689
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 120983. 0.392661 0.196330 0.980538i \(-0.437097\pi\)
0.196330 + 0.980538i \(0.437097\pi\)
\(38\) 0 0
\(39\) −94173.9 −0.254217
\(40\) 0 0
\(41\) −395217. −0.895554 −0.447777 0.894145i \(-0.647784\pi\)
−0.447777 + 0.894145i \(0.647784\pi\)
\(42\) 0 0
\(43\) 378681. 0.726330 0.363165 0.931725i \(-0.381696\pi\)
0.363165 + 0.931725i \(0.381696\pi\)
\(44\) 0 0
\(45\) 329502. 0.539032
\(46\) 0 0
\(47\) −669990. −0.941295 −0.470647 0.882321i \(-0.655980\pi\)
−0.470647 + 0.882321i \(0.655980\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −416723. −0.439897
\(52\) 0 0
\(53\) −2.11871e6 −1.95482 −0.977409 0.211358i \(-0.932212\pi\)
−0.977409 + 0.211358i \(0.932212\pi\)
\(54\) 0 0
\(55\) −3.65256e6 −2.96024
\(56\) 0 0
\(57\) −995128. −0.711733
\(58\) 0 0
\(59\) 987048. 0.625686 0.312843 0.949805i \(-0.398719\pi\)
0.312843 + 0.949805i \(0.398719\pi\)
\(60\) 0 0
\(61\) 2.20973e6 1.24648 0.623239 0.782031i \(-0.285816\pi\)
0.623239 + 0.782031i \(0.285816\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.57651e6 0.712034
\(66\) 0 0
\(67\) −3.69012e6 −1.49892 −0.749461 0.662049i \(-0.769687\pi\)
−0.749461 + 0.662049i \(0.769687\pi\)
\(68\) 0 0
\(69\) 1.65341e6 0.605911
\(70\) 0 0
\(71\) −3.16876e6 −1.05072 −0.525358 0.850881i \(-0.676068\pi\)
−0.525358 + 0.850881i \(0.676068\pi\)
\(72\) 0 0
\(73\) 1.68346e6 0.506492 0.253246 0.967402i \(-0.418502\pi\)
0.253246 + 0.967402i \(0.418502\pi\)
\(74\) 0 0
\(75\) −3.40664e6 −0.932421
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.33267e6 0.532303 0.266152 0.963931i \(-0.414248\pi\)
0.266152 + 0.963931i \(0.414248\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) −4.57725e6 −0.878682 −0.439341 0.898320i \(-0.644788\pi\)
−0.439341 + 0.898320i \(0.644788\pi\)
\(84\) 0 0
\(85\) 6.97612e6 1.23211
\(86\) 0 0
\(87\) 6.75230e6 1.09935
\(88\) 0 0
\(89\) 1.56713e6 0.235635 0.117817 0.993035i \(-0.462410\pi\)
0.117817 + 0.993035i \(0.462410\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −3.30845e6 −0.426515
\(94\) 0 0
\(95\) 1.66589e7 1.99349
\(96\) 0 0
\(97\) −3.36078e6 −0.373886 −0.186943 0.982371i \(-0.559858\pi\)
−0.186943 + 0.982371i \(0.559858\pi\)
\(98\) 0 0
\(99\) −5.89106e6 −0.610198
\(100\) 0 0
\(101\) 1.58607e7 1.53178 0.765892 0.642969i \(-0.222298\pi\)
0.765892 + 0.642969i \(0.222298\pi\)
\(102\) 0 0
\(103\) −1.49495e6 −0.134802 −0.0674008 0.997726i \(-0.521471\pi\)
−0.0674008 + 0.997726i \(0.521471\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.63742e7 −1.29216 −0.646081 0.763269i \(-0.723593\pi\)
−0.646081 + 0.763269i \(0.723593\pi\)
\(108\) 0 0
\(109\) 8.19567e6 0.606166 0.303083 0.952964i \(-0.401984\pi\)
0.303083 + 0.952964i \(0.401984\pi\)
\(110\) 0 0
\(111\) −3.26654e6 −0.226703
\(112\) 0 0
\(113\) −3.84294e6 −0.250547 −0.125273 0.992122i \(-0.539981\pi\)
−0.125273 + 0.992122i \(0.539981\pi\)
\(114\) 0 0
\(115\) −2.76788e7 −1.69709
\(116\) 0 0
\(117\) 2.54269e6 0.146772
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 4.58157e7 2.35107
\(122\) 0 0
\(123\) 1.06708e7 0.517048
\(124\) 0 0
\(125\) 2.17168e7 0.994515
\(126\) 0 0
\(127\) 3.97392e7 1.72150 0.860748 0.509032i \(-0.169996\pi\)
0.860748 + 0.509032i \(0.169996\pi\)
\(128\) 0 0
\(129\) −1.02244e7 −0.419347
\(130\) 0 0
\(131\) −2.75018e7 −1.06884 −0.534418 0.845220i \(-0.679469\pi\)
−0.534418 + 0.845220i \(0.679469\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −8.89656e6 −0.311210
\(136\) 0 0
\(137\) 2.65279e7 0.881415 0.440708 0.897651i \(-0.354728\pi\)
0.440708 + 0.897651i \(0.354728\pi\)
\(138\) 0 0
\(139\) 1.43539e7 0.453335 0.226668 0.973972i \(-0.427217\pi\)
0.226668 + 0.973972i \(0.427217\pi\)
\(140\) 0 0
\(141\) 1.80897e7 0.543457
\(142\) 0 0
\(143\) −2.81860e7 −0.806040
\(144\) 0 0
\(145\) −1.13037e8 −3.07915
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.49065e7 0.369168 0.184584 0.982817i \(-0.440906\pi\)
0.184584 + 0.982817i \(0.440906\pi\)
\(150\) 0 0
\(151\) −5.46913e7 −1.29270 −0.646351 0.763040i \(-0.723706\pi\)
−0.646351 + 0.763040i \(0.723706\pi\)
\(152\) 0 0
\(153\) 1.12515e7 0.253975
\(154\) 0 0
\(155\) 5.53850e7 1.19462
\(156\) 0 0
\(157\) 2.09060e7 0.431144 0.215572 0.976488i \(-0.430838\pi\)
0.215572 + 0.976488i \(0.430838\pi\)
\(158\) 0 0
\(159\) 5.72052e7 1.12861
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −7.99281e7 −1.44558 −0.722791 0.691067i \(-0.757141\pi\)
−0.722791 + 0.691067i \(0.757141\pi\)
\(164\) 0 0
\(165\) 9.86191e7 1.70910
\(166\) 0 0
\(167\) −2.74846e7 −0.456648 −0.228324 0.973585i \(-0.573324\pi\)
−0.228324 + 0.973585i \(0.573324\pi\)
\(168\) 0 0
\(169\) −5.05829e7 −0.806121
\(170\) 0 0
\(171\) 2.68685e7 0.410919
\(172\) 0 0
\(173\) 1.04806e8 1.53896 0.769479 0.638672i \(-0.220516\pi\)
0.769479 + 0.638672i \(0.220516\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.66503e7 −0.361240
\(178\) 0 0
\(179\) 3.73656e7 0.486952 0.243476 0.969907i \(-0.421712\pi\)
0.243476 + 0.969907i \(0.421712\pi\)
\(180\) 0 0
\(181\) −1.21511e8 −1.52314 −0.761572 0.648080i \(-0.775572\pi\)
−0.761572 + 0.648080i \(0.775572\pi\)
\(182\) 0 0
\(183\) −5.96627e7 −0.719655
\(184\) 0 0
\(185\) 5.46833e7 0.634970
\(186\) 0 0
\(187\) −1.24724e8 −1.39477
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.79444e8 −1.86343 −0.931715 0.363189i \(-0.881688\pi\)
−0.931715 + 0.363189i \(0.881688\pi\)
\(192\) 0 0
\(193\) −1.13939e8 −1.14083 −0.570417 0.821356i \(-0.693218\pi\)
−0.570417 + 0.821356i \(0.693218\pi\)
\(194\) 0 0
\(195\) −4.25658e7 −0.411093
\(196\) 0 0
\(197\) 4.15855e7 0.387534 0.193767 0.981048i \(-0.437929\pi\)
0.193767 + 0.981048i \(0.437929\pi\)
\(198\) 0 0
\(199\) −1.61371e8 −1.45158 −0.725789 0.687917i \(-0.758525\pi\)
−0.725789 + 0.687917i \(0.758525\pi\)
\(200\) 0 0
\(201\) 9.96333e7 0.865403
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.78635e8 −1.44820
\(206\) 0 0
\(207\) −4.46421e7 −0.349823
\(208\) 0 0
\(209\) −2.97839e8 −2.25668
\(210\) 0 0
\(211\) 5.72672e7 0.419679 0.209840 0.977736i \(-0.432706\pi\)
0.209840 + 0.977736i \(0.432706\pi\)
\(212\) 0 0
\(213\) 8.55565e7 0.606631
\(214\) 0 0
\(215\) 1.71161e8 1.17455
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −4.54534e7 −0.292423
\(220\) 0 0
\(221\) 5.38332e7 0.335488
\(222\) 0 0
\(223\) 4.48478e7 0.270816 0.135408 0.990790i \(-0.456765\pi\)
0.135408 + 0.990790i \(0.456765\pi\)
\(224\) 0 0
\(225\) 9.19793e7 0.538333
\(226\) 0 0
\(227\) −2.32612e7 −0.131990 −0.0659951 0.997820i \(-0.521022\pi\)
−0.0659951 + 0.997820i \(0.521022\pi\)
\(228\) 0 0
\(229\) −2.26500e8 −1.24636 −0.623181 0.782077i \(-0.714160\pi\)
−0.623181 + 0.782077i \(0.714160\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.29764e8 −0.672059 −0.336030 0.941851i \(-0.609084\pi\)
−0.336030 + 0.941851i \(0.609084\pi\)
\(234\) 0 0
\(235\) −3.02830e8 −1.52216
\(236\) 0 0
\(237\) −6.29822e7 −0.307325
\(238\) 0 0
\(239\) −3.78090e8 −1.79144 −0.895721 0.444616i \(-0.853340\pi\)
−0.895721 + 0.444616i \(0.853340\pi\)
\(240\) 0 0
\(241\) −1.23504e8 −0.568359 −0.284180 0.958771i \(-0.591721\pi\)
−0.284180 + 0.958771i \(0.591721\pi\)
\(242\) 0 0
\(243\) −1.43489e7 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.28553e8 0.542803
\(248\) 0 0
\(249\) 1.23586e8 0.507307
\(250\) 0 0
\(251\) −8.74207e7 −0.348945 −0.174472 0.984662i \(-0.555822\pi\)
−0.174472 + 0.984662i \(0.555822\pi\)
\(252\) 0 0
\(253\) 4.94861e8 1.92115
\(254\) 0 0
\(255\) −1.88355e8 −0.711356
\(256\) 0 0
\(257\) −5.22709e8 −1.92085 −0.960426 0.278536i \(-0.910151\pi\)
−0.960426 + 0.278536i \(0.910151\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.82312e8 −0.634708
\(262\) 0 0
\(263\) 5.32122e7 0.180371 0.0901854 0.995925i \(-0.471254\pi\)
0.0901854 + 0.995925i \(0.471254\pi\)
\(264\) 0 0
\(265\) −9.57641e8 −3.16113
\(266\) 0 0
\(267\) −4.23124e7 −0.136044
\(268\) 0 0
\(269\) −1.51009e7 −0.0473010 −0.0236505 0.999720i \(-0.507529\pi\)
−0.0236505 + 0.999720i \(0.507529\pi\)
\(270\) 0 0
\(271\) −1.46208e7 −0.0446250 −0.0223125 0.999751i \(-0.507103\pi\)
−0.0223125 + 0.999751i \(0.507103\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.01960e9 −2.95641
\(276\) 0 0
\(277\) 2.84940e8 0.805515 0.402758 0.915307i \(-0.368052\pi\)
0.402758 + 0.915307i \(0.368052\pi\)
\(278\) 0 0
\(279\) 8.93282e7 0.246249
\(280\) 0 0
\(281\) 5.90301e8 1.58709 0.793544 0.608512i \(-0.208233\pi\)
0.793544 + 0.608512i \(0.208233\pi\)
\(282\) 0 0
\(283\) −2.42565e8 −0.636174 −0.318087 0.948062i \(-0.603040\pi\)
−0.318087 + 0.948062i \(0.603040\pi\)
\(284\) 0 0
\(285\) −4.49790e8 −1.15094
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.72125e8 −0.419471
\(290\) 0 0
\(291\) 9.07411e7 0.215863
\(292\) 0 0
\(293\) 3.11797e8 0.724162 0.362081 0.932147i \(-0.382066\pi\)
0.362081 + 0.932147i \(0.382066\pi\)
\(294\) 0 0
\(295\) 4.46138e8 1.01179
\(296\) 0 0
\(297\) 1.59059e8 0.352298
\(298\) 0 0
\(299\) −2.13591e8 −0.462098
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −4.28239e8 −0.884376
\(304\) 0 0
\(305\) 9.98781e8 2.01568
\(306\) 0 0
\(307\) 8.03650e8 1.58519 0.792597 0.609746i \(-0.208728\pi\)
0.792597 + 0.609746i \(0.208728\pi\)
\(308\) 0 0
\(309\) 4.03635e7 0.0778278
\(310\) 0 0
\(311\) −3.73497e8 −0.704087 −0.352044 0.935984i \(-0.614513\pi\)
−0.352044 + 0.935984i \(0.614513\pi\)
\(312\) 0 0
\(313\) 7.41945e8 1.36762 0.683812 0.729658i \(-0.260321\pi\)
0.683812 + 0.729658i \(0.260321\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.58238e8 0.984264 0.492132 0.870521i \(-0.336218\pi\)
0.492132 + 0.870521i \(0.336218\pi\)
\(318\) 0 0
\(319\) 2.02094e9 3.48567
\(320\) 0 0
\(321\) 4.42104e8 0.746030
\(322\) 0 0
\(323\) 5.68851e8 0.939268
\(324\) 0 0
\(325\) 4.40078e8 0.711111
\(326\) 0 0
\(327\) −2.21283e8 −0.349970
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.12116e9 −1.69930 −0.849652 0.527344i \(-0.823188\pi\)
−0.849652 + 0.527344i \(0.823188\pi\)
\(332\) 0 0
\(333\) 8.81964e7 0.130887
\(334\) 0 0
\(335\) −1.66791e9 −2.42390
\(336\) 0 0
\(337\) 1.50796e8 0.214627 0.107313 0.994225i \(-0.465775\pi\)
0.107313 + 0.994225i \(0.465775\pi\)
\(338\) 0 0
\(339\) 1.03759e8 0.144653
\(340\) 0 0
\(341\) −9.90209e8 −1.35234
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 7.47329e8 0.979817
\(346\) 0 0
\(347\) −1.30570e9 −1.67761 −0.838806 0.544430i \(-0.816746\pi\)
−0.838806 + 0.544430i \(0.816746\pi\)
\(348\) 0 0
\(349\) −7.75432e8 −0.976460 −0.488230 0.872715i \(-0.662357\pi\)
−0.488230 + 0.872715i \(0.662357\pi\)
\(350\) 0 0
\(351\) −6.86527e7 −0.0847389
\(352\) 0 0
\(353\) 3.31269e8 0.400839 0.200419 0.979710i \(-0.435770\pi\)
0.200419 + 0.979710i \(0.435770\pi\)
\(354\) 0 0
\(355\) −1.43225e9 −1.69911
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.26793e7 −0.0600910 −0.0300455 0.999549i \(-0.509565\pi\)
−0.0300455 + 0.999549i \(0.509565\pi\)
\(360\) 0 0
\(361\) 4.64537e8 0.519691
\(362\) 0 0
\(363\) −1.23702e9 −1.35739
\(364\) 0 0
\(365\) 7.60911e8 0.819047
\(366\) 0 0
\(367\) −5.82310e8 −0.614926 −0.307463 0.951560i \(-0.599480\pi\)
−0.307463 + 0.951560i \(0.599480\pi\)
\(368\) 0 0
\(369\) −2.88113e8 −0.298518
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −9.18792e8 −0.916719 −0.458359 0.888767i \(-0.651563\pi\)
−0.458359 + 0.888767i \(0.651563\pi\)
\(374\) 0 0
\(375\) −5.86354e8 −0.574183
\(376\) 0 0
\(377\) −8.72277e8 −0.838417
\(378\) 0 0
\(379\) −9.14421e7 −0.0862798 −0.0431399 0.999069i \(-0.513736\pi\)
−0.0431399 + 0.999069i \(0.513736\pi\)
\(380\) 0 0
\(381\) −1.07296e9 −0.993906
\(382\) 0 0
\(383\) −9.01192e8 −0.819637 −0.409819 0.912167i \(-0.634408\pi\)
−0.409819 + 0.912167i \(0.634408\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.76059e8 0.242110
\(388\) 0 0
\(389\) −1.32341e9 −1.13991 −0.569955 0.821676i \(-0.693039\pi\)
−0.569955 + 0.821676i \(0.693039\pi\)
\(390\) 0 0
\(391\) −9.45149e8 −0.799616
\(392\) 0 0
\(393\) 7.42548e8 0.617093
\(394\) 0 0
\(395\) 1.05435e9 0.860785
\(396\) 0 0
\(397\) 4.77243e8 0.382801 0.191400 0.981512i \(-0.438697\pi\)
0.191400 + 0.981512i \(0.438697\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.20207e9 −0.930943 −0.465471 0.885063i \(-0.654115\pi\)
−0.465471 + 0.885063i \(0.654115\pi\)
\(402\) 0 0
\(403\) 4.27393e8 0.325282
\(404\) 0 0
\(405\) 2.40207e8 0.179677
\(406\) 0 0
\(407\) −9.77664e8 −0.718802
\(408\) 0 0
\(409\) 2.37094e9 1.71352 0.856758 0.515718i \(-0.172475\pi\)
0.856758 + 0.515718i \(0.172475\pi\)
\(410\) 0 0
\(411\) −7.16253e8 −0.508885
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.06888e9 −1.42091
\(416\) 0 0
\(417\) −3.87557e8 −0.261733
\(418\) 0 0
\(419\) −1.31313e9 −0.872087 −0.436044 0.899926i \(-0.643621\pi\)
−0.436044 + 0.899926i \(0.643621\pi\)
\(420\) 0 0
\(421\) −1.94154e9 −1.26811 −0.634057 0.773286i \(-0.718612\pi\)
−0.634057 + 0.773286i \(0.718612\pi\)
\(422\) 0 0
\(423\) −4.88422e8 −0.313765
\(424\) 0 0
\(425\) 1.94736e9 1.23051
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 7.61021e8 0.465367
\(430\) 0 0
\(431\) 1.16634e9 0.701705 0.350852 0.936431i \(-0.385892\pi\)
0.350852 + 0.936431i \(0.385892\pi\)
\(432\) 0 0
\(433\) −1.43804e9 −0.851260 −0.425630 0.904897i \(-0.639947\pi\)
−0.425630 + 0.904897i \(0.639947\pi\)
\(434\) 0 0
\(435\) 3.05199e9 1.77775
\(436\) 0 0
\(437\) −2.25700e9 −1.29374
\(438\) 0 0
\(439\) 8.07279e8 0.455405 0.227702 0.973731i \(-0.426879\pi\)
0.227702 + 0.973731i \(0.426879\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.35867e8 0.238199 0.119100 0.992882i \(-0.461999\pi\)
0.119100 + 0.992882i \(0.461999\pi\)
\(444\) 0 0
\(445\) 7.08329e8 0.381044
\(446\) 0 0
\(447\) −4.02475e8 −0.213139
\(448\) 0 0
\(449\) −3.29463e8 −0.171769 −0.0858845 0.996305i \(-0.527372\pi\)
−0.0858845 + 0.996305i \(0.527372\pi\)
\(450\) 0 0
\(451\) 3.19375e9 1.63939
\(452\) 0 0
\(453\) 1.47666e9 0.746342
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.41800e9 −0.694976 −0.347488 0.937684i \(-0.612965\pi\)
−0.347488 + 0.937684i \(0.612965\pi\)
\(458\) 0 0
\(459\) −3.03791e8 −0.146632
\(460\) 0 0
\(461\) −2.40881e9 −1.14512 −0.572558 0.819864i \(-0.694049\pi\)
−0.572558 + 0.819864i \(0.694049\pi\)
\(462\) 0 0
\(463\) −3.46303e9 −1.62152 −0.810762 0.585376i \(-0.800947\pi\)
−0.810762 + 0.585376i \(0.800947\pi\)
\(464\) 0 0
\(465\) −1.49539e9 −0.689716
\(466\) 0 0
\(467\) 6.52909e8 0.296649 0.148325 0.988939i \(-0.452612\pi\)
0.148325 + 0.988939i \(0.452612\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −5.64462e8 −0.248921
\(472\) 0 0
\(473\) −3.06013e9 −1.32962
\(474\) 0 0
\(475\) 4.65027e9 1.99090
\(476\) 0 0
\(477\) −1.54454e9 −0.651606
\(478\) 0 0
\(479\) 2.95873e9 1.23007 0.615036 0.788499i \(-0.289141\pi\)
0.615036 + 0.788499i \(0.289141\pi\)
\(480\) 0 0
\(481\) 4.21978e8 0.172895
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.51905e9 −0.604609
\(486\) 0 0
\(487\) 1.11825e9 0.438720 0.219360 0.975644i \(-0.429603\pi\)
0.219360 + 0.975644i \(0.429603\pi\)
\(488\) 0 0
\(489\) 2.15806e9 0.834607
\(490\) 0 0
\(491\) 8.64451e8 0.329576 0.164788 0.986329i \(-0.447306\pi\)
0.164788 + 0.986329i \(0.447306\pi\)
\(492\) 0 0
\(493\) −3.85986e9 −1.45080
\(494\) 0 0
\(495\) −2.66271e9 −0.986748
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 5.12167e9 1.84527 0.922634 0.385677i \(-0.126032\pi\)
0.922634 + 0.385677i \(0.126032\pi\)
\(500\) 0 0
\(501\) 7.42083e8 0.263646
\(502\) 0 0
\(503\) −4.49361e8 −0.157437 −0.0787186 0.996897i \(-0.525083\pi\)
−0.0787186 + 0.996897i \(0.525083\pi\)
\(504\) 0 0
\(505\) 7.16891e9 2.47704
\(506\) 0 0
\(507\) 1.36574e9 0.465414
\(508\) 0 0
\(509\) 3.08554e9 1.03710 0.518549 0.855048i \(-0.326472\pi\)
0.518549 + 0.855048i \(0.326472\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −7.25448e8 −0.237244
\(514\) 0 0
\(515\) −6.75704e8 −0.217987
\(516\) 0 0
\(517\) 5.41420e9 1.72313
\(518\) 0 0
\(519\) −2.82977e9 −0.888518
\(520\) 0 0
\(521\) −2.85515e9 −0.884498 −0.442249 0.896892i \(-0.645819\pi\)
−0.442249 + 0.896892i \(0.645819\pi\)
\(522\) 0 0
\(523\) 1.82294e8 0.0557205 0.0278603 0.999612i \(-0.491131\pi\)
0.0278603 + 0.999612i \(0.491131\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.89123e9 0.562869
\(528\) 0 0
\(529\) 3.45197e8 0.101385
\(530\) 0 0
\(531\) 7.19558e8 0.208562
\(532\) 0 0
\(533\) −1.37848e9 −0.394327
\(534\) 0 0
\(535\) −7.40101e9 −2.08955
\(536\) 0 0
\(537\) −1.00887e9 −0.281142
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −4.95494e9 −1.34539 −0.672694 0.739920i \(-0.734863\pi\)
−0.672694 + 0.739920i \(0.734863\pi\)
\(542\) 0 0
\(543\) 3.28080e9 0.879388
\(544\) 0 0
\(545\) 3.70438e9 0.980229
\(546\) 0 0
\(547\) 9.68687e8 0.253063 0.126531 0.991963i \(-0.459616\pi\)
0.126531 + 0.991963i \(0.459616\pi\)
\(548\) 0 0
\(549\) 1.61089e9 0.415493
\(550\) 0 0
\(551\) −9.21729e9 −2.34732
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1.47645e9 −0.366600
\(556\) 0 0
\(557\) −3.02958e9 −0.742829 −0.371415 0.928467i \(-0.621127\pi\)
−0.371415 + 0.928467i \(0.621127\pi\)
\(558\) 0 0
\(559\) 1.32081e9 0.319815
\(560\) 0 0
\(561\) 3.36754e9 0.805273
\(562\) 0 0
\(563\) −5.40383e9 −1.27621 −0.638105 0.769949i \(-0.720281\pi\)
−0.638105 + 0.769949i \(0.720281\pi\)
\(564\) 0 0
\(565\) −1.73698e9 −0.405158
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.42982e9 1.00807 0.504037 0.863682i \(-0.331847\pi\)
0.504037 + 0.863682i \(0.331847\pi\)
\(570\) 0 0
\(571\) −1.50129e9 −0.337473 −0.168737 0.985661i \(-0.553969\pi\)
−0.168737 + 0.985661i \(0.553969\pi\)
\(572\) 0 0
\(573\) 4.84500e9 1.07585
\(574\) 0 0
\(575\) −7.72644e9 −1.69489
\(576\) 0 0
\(577\) −5.66760e9 −1.22824 −0.614121 0.789212i \(-0.710489\pi\)
−0.614121 + 0.789212i \(0.710489\pi\)
\(578\) 0 0
\(579\) 3.07636e9 0.658660
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.71213e10 3.57848
\(584\) 0 0
\(585\) 1.14928e9 0.237345
\(586\) 0 0
\(587\) 5.00583e9 1.02151 0.510755 0.859726i \(-0.329366\pi\)
0.510755 + 0.859726i \(0.329366\pi\)
\(588\) 0 0
\(589\) 4.51623e9 0.910694
\(590\) 0 0
\(591\) −1.12281e9 −0.223743
\(592\) 0 0
\(593\) 9.33774e9 1.83887 0.919433 0.393246i \(-0.128648\pi\)
0.919433 + 0.393246i \(0.128648\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.35703e9 0.838069
\(598\) 0 0
\(599\) −3.39260e9 −0.644969 −0.322485 0.946575i \(-0.604518\pi\)
−0.322485 + 0.946575i \(0.604518\pi\)
\(600\) 0 0
\(601\) −3.29915e9 −0.619928 −0.309964 0.950748i \(-0.600317\pi\)
−0.309964 + 0.950748i \(0.600317\pi\)
\(602\) 0 0
\(603\) −2.69010e9 −0.499641
\(604\) 0 0
\(605\) 2.07083e10 3.80191
\(606\) 0 0
\(607\) 7.78056e9 1.41205 0.706026 0.708186i \(-0.250486\pi\)
0.706026 + 0.708186i \(0.250486\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.33687e9 −0.414468
\(612\) 0 0
\(613\) −2.54469e9 −0.446193 −0.223096 0.974796i \(-0.571616\pi\)
−0.223096 + 0.974796i \(0.571616\pi\)
\(614\) 0 0
\(615\) 4.82314e9 0.836117
\(616\) 0 0
\(617\) −9.21447e9 −1.57933 −0.789664 0.613540i \(-0.789745\pi\)
−0.789664 + 0.613540i \(0.789745\pi\)
\(618\) 0 0
\(619\) 8.12717e9 1.37728 0.688639 0.725104i \(-0.258208\pi\)
0.688639 + 0.725104i \(0.258208\pi\)
\(620\) 0 0
\(621\) 1.20534e9 0.201970
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4.13481e7 −0.00677447
\(626\) 0 0
\(627\) 8.04165e9 1.30289
\(628\) 0 0
\(629\) 1.86727e9 0.299178
\(630\) 0 0
\(631\) −4.05269e9 −0.642156 −0.321078 0.947053i \(-0.604045\pi\)
−0.321078 + 0.947053i \(0.604045\pi\)
\(632\) 0 0
\(633\) −1.54621e9 −0.242302
\(634\) 0 0
\(635\) 1.79618e10 2.78382
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.31003e9 −0.350238
\(640\) 0 0
\(641\) −3.49281e8 −0.0523807 −0.0261903 0.999657i \(-0.508338\pi\)
−0.0261903 + 0.999657i \(0.508338\pi\)
\(642\) 0 0
\(643\) −7.03731e8 −0.104392 −0.0521961 0.998637i \(-0.516622\pi\)
−0.0521961 + 0.998637i \(0.516622\pi\)
\(644\) 0 0
\(645\) −4.62135e9 −0.678125
\(646\) 0 0
\(647\) 1.23333e10 1.79025 0.895125 0.445816i \(-0.147086\pi\)
0.895125 + 0.445816i \(0.147086\pi\)
\(648\) 0 0
\(649\) −7.97635e9 −1.14538
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.73708e9 −0.665756 −0.332878 0.942970i \(-0.608020\pi\)
−0.332878 + 0.942970i \(0.608020\pi\)
\(654\) 0 0
\(655\) −1.24306e10 −1.72841
\(656\) 0 0
\(657\) 1.22724e9 0.168831
\(658\) 0 0
\(659\) −2.34642e9 −0.319380 −0.159690 0.987167i \(-0.551049\pi\)
−0.159690 + 0.987167i \(0.551049\pi\)
\(660\) 0 0
\(661\) −5.45268e9 −0.734353 −0.367176 0.930151i \(-0.619675\pi\)
−0.367176 + 0.930151i \(0.619675\pi\)
\(662\) 0 0
\(663\) −1.45350e9 −0.193694
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.53146e10 1.99832
\(668\) 0 0
\(669\) −1.21089e9 −0.156356
\(670\) 0 0
\(671\) −1.78569e10 −2.28179
\(672\) 0 0
\(673\) 4.55675e9 0.576239 0.288120 0.957594i \(-0.406970\pi\)
0.288120 + 0.957594i \(0.406970\pi\)
\(674\) 0 0
\(675\) −2.48344e9 −0.310807
\(676\) 0 0
\(677\) 4.62323e9 0.572645 0.286322 0.958133i \(-0.407567\pi\)
0.286322 + 0.958133i \(0.407567\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 6.28052e8 0.0762045
\(682\) 0 0
\(683\) −1.35281e9 −0.162467 −0.0812335 0.996695i \(-0.525886\pi\)
−0.0812335 + 0.996695i \(0.525886\pi\)
\(684\) 0 0
\(685\) 1.19904e10 1.42533
\(686\) 0 0
\(687\) 6.11551e9 0.719588
\(688\) 0 0
\(689\) −7.38990e9 −0.860738
\(690\) 0 0
\(691\) −1.32531e10 −1.52807 −0.764037 0.645172i \(-0.776786\pi\)
−0.764037 + 0.645172i \(0.776786\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.48787e9 0.733087
\(696\) 0 0
\(697\) −6.09984e9 −0.682344
\(698\) 0 0
\(699\) 3.50362e9 0.388014
\(700\) 0 0
\(701\) −1.15263e10 −1.26380 −0.631900 0.775050i \(-0.717725\pi\)
−0.631900 + 0.775050i \(0.717725\pi\)
\(702\) 0 0
\(703\) 4.45901e9 0.484055
\(704\) 0 0
\(705\) 8.17641e9 0.878822
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 7.35442e9 0.774973 0.387487 0.921875i \(-0.373343\pi\)
0.387487 + 0.921875i \(0.373343\pi\)
\(710\) 0 0
\(711\) 1.70052e9 0.177434
\(712\) 0 0
\(713\) −7.50374e9 −0.775291
\(714\) 0 0
\(715\) −1.27398e10 −1.30344
\(716\) 0 0
\(717\) 1.02084e10 1.03429
\(718\) 0 0
\(719\) 6.01484e9 0.603494 0.301747 0.953388i \(-0.402430\pi\)
0.301747 + 0.953388i \(0.402430\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 3.33462e9 0.328142
\(724\) 0 0
\(725\) −3.15537e10 −3.07516
\(726\) 0 0
\(727\) 1.92599e10 1.85902 0.929509 0.368800i \(-0.120231\pi\)
0.929509 + 0.368800i \(0.120231\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) 5.84463e9 0.553409
\(732\) 0 0
\(733\) −1.88260e10 −1.76561 −0.882804 0.469741i \(-0.844347\pi\)
−0.882804 + 0.469741i \(0.844347\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.98199e10 2.74392
\(738\) 0 0
\(739\) −4.33280e9 −0.394924 −0.197462 0.980311i \(-0.563270\pi\)
−0.197462 + 0.980311i \(0.563270\pi\)
\(740\) 0 0
\(741\) −3.47093e9 −0.313388
\(742\) 0 0
\(743\) −3.47938e8 −0.0311201 −0.0155600 0.999879i \(-0.504953\pi\)
−0.0155600 + 0.999879i \(0.504953\pi\)
\(744\) 0 0
\(745\) 6.73762e9 0.596980
\(746\) 0 0
\(747\) −3.33682e9 −0.292894
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −6.35798e9 −0.547746 −0.273873 0.961766i \(-0.588305\pi\)
−0.273873 + 0.961766i \(0.588305\pi\)
\(752\) 0 0
\(753\) 2.36036e9 0.201463
\(754\) 0 0
\(755\) −2.47200e10 −2.09042
\(756\) 0 0
\(757\) −6.43605e9 −0.539242 −0.269621 0.962966i \(-0.586898\pi\)
−0.269621 + 0.962966i \(0.586898\pi\)
\(758\) 0 0
\(759\) −1.33612e10 −1.10918
\(760\) 0 0
\(761\) 1.94038e10 1.59602 0.798012 0.602642i \(-0.205885\pi\)
0.798012 + 0.602642i \(0.205885\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 5.08559e9 0.410702
\(766\) 0 0
\(767\) 3.44274e9 0.275500
\(768\) 0 0
\(769\) 1.02717e10 0.814520 0.407260 0.913312i \(-0.366484\pi\)
0.407260 + 0.913312i \(0.366484\pi\)
\(770\) 0 0
\(771\) 1.41131e10 1.10900
\(772\) 0 0
\(773\) 2.40473e10 1.87257 0.936287 0.351237i \(-0.114239\pi\)
0.936287 + 0.351237i \(0.114239\pi\)
\(774\) 0 0
\(775\) 1.54605e10 1.19307
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.45663e10 −1.10400
\(780\) 0 0
\(781\) 2.56068e10 1.92343
\(782\) 0 0
\(783\) 4.92243e9 0.366449
\(784\) 0 0
\(785\) 9.44934e9 0.697201
\(786\) 0 0
\(787\) −1.64642e10 −1.20401 −0.602003 0.798494i \(-0.705631\pi\)
−0.602003 + 0.798494i \(0.705631\pi\)
\(788\) 0 0
\(789\) −1.43673e9 −0.104137
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 7.70736e9 0.548845
\(794\) 0 0
\(795\) 2.58563e10 1.82508
\(796\) 0 0
\(797\) 2.76494e10 1.93456 0.967279 0.253716i \(-0.0816530\pi\)
0.967279 + 0.253716i \(0.0816530\pi\)
\(798\) 0 0
\(799\) −1.03407e10 −0.717196
\(800\) 0 0
\(801\) 1.14244e9 0.0785449
\(802\) 0 0
\(803\) −1.36041e10 −0.927181
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.07725e8 0.0273093
\(808\) 0 0
\(809\) −4.64507e9 −0.308441 −0.154221 0.988036i \(-0.549287\pi\)
−0.154221 + 0.988036i \(0.549287\pi\)
\(810\) 0 0
\(811\) 1.23997e10 0.816280 0.408140 0.912919i \(-0.366178\pi\)
0.408140 + 0.912919i \(0.366178\pi\)
\(812\) 0 0
\(813\) 3.94762e8 0.0257643
\(814\) 0 0
\(815\) −3.61269e10 −2.33764
\(816\) 0 0
\(817\) 1.39569e10 0.895389
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.27726e9 0.332819 0.166409 0.986057i \(-0.446783\pi\)
0.166409 + 0.986057i \(0.446783\pi\)
\(822\) 0 0
\(823\) 7.08717e9 0.443173 0.221587 0.975141i \(-0.428876\pi\)
0.221587 + 0.975141i \(0.428876\pi\)
\(824\) 0 0
\(825\) 2.75291e10 1.70688
\(826\) 0 0
\(827\) −2.82391e10 −1.73613 −0.868064 0.496453i \(-0.834636\pi\)
−0.868064 + 0.496453i \(0.834636\pi\)
\(828\) 0 0
\(829\) 2.22198e9 0.135456 0.0677282 0.997704i \(-0.478425\pi\)
0.0677282 + 0.997704i \(0.478425\pi\)
\(830\) 0 0
\(831\) −7.69337e9 −0.465065
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.24228e10 −0.738443
\(836\) 0 0
\(837\) −2.41186e9 −0.142172
\(838\) 0 0
\(839\) −6.11614e9 −0.357529 −0.178764 0.983892i \(-0.557210\pi\)
−0.178764 + 0.983892i \(0.557210\pi\)
\(840\) 0 0
\(841\) 4.52927e10 2.62568
\(842\) 0 0
\(843\) −1.59381e10 −0.916306
\(844\) 0 0
\(845\) −2.28631e10 −1.30358
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 6.54926e9 0.367295
\(850\) 0 0
\(851\) −7.40867e9 −0.412085
\(852\) 0 0
\(853\) 5.40282e9 0.298057 0.149028 0.988833i \(-0.452385\pi\)
0.149028 + 0.988833i \(0.452385\pi\)
\(854\) 0 0
\(855\) 1.21443e10 0.664496
\(856\) 0 0
\(857\) 2.98161e10 1.61815 0.809073 0.587708i \(-0.199970\pi\)
0.809073 + 0.587708i \(0.199970\pi\)
\(858\) 0 0
\(859\) 2.62604e10 1.41360 0.706799 0.707415i \(-0.250139\pi\)
0.706799 + 0.707415i \(0.250139\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −7.98245e9 −0.422764 −0.211382 0.977404i \(-0.567796\pi\)
−0.211382 + 0.977404i \(0.567796\pi\)
\(864\) 0 0
\(865\) 4.73717e10 2.48864
\(866\) 0 0
\(867\) 4.64738e9 0.242182
\(868\) 0 0
\(869\) −1.88504e10 −0.974430
\(870\) 0 0
\(871\) −1.28709e10 −0.660000
\(872\) 0 0
\(873\) −2.45001e9 −0.124629
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −3.31271e10 −1.65838 −0.829191 0.558966i \(-0.811198\pi\)
−0.829191 + 0.558966i \(0.811198\pi\)
\(878\) 0 0
\(879\) −8.41853e9 −0.418095
\(880\) 0 0
\(881\) −3.69116e10 −1.81864 −0.909321 0.416095i \(-0.863398\pi\)
−0.909321 + 0.416095i \(0.863398\pi\)
\(882\) 0 0
\(883\) −1.50171e9 −0.0734045 −0.0367022 0.999326i \(-0.511685\pi\)
−0.0367022 + 0.999326i \(0.511685\pi\)
\(884\) 0 0
\(885\) −1.20457e10 −0.584159
\(886\) 0 0
\(887\) 1.04158e10 0.501141 0.250570 0.968098i \(-0.419382\pi\)
0.250570 + 0.968098i \(0.419382\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.29459e9 −0.203399
\(892\) 0 0
\(893\) −2.46935e10 −1.16039
\(894\) 0 0
\(895\) 1.68890e10 0.787448
\(896\) 0 0
\(897\) 5.76697e9 0.266793
\(898\) 0 0
\(899\) −3.06442e10 −1.40666
\(900\) 0 0
\(901\) −3.27005e10 −1.48942
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.49221e10 −2.46307
\(906\) 0 0
\(907\) 2.13957e10 0.952141 0.476071 0.879407i \(-0.342061\pi\)
0.476071 + 0.879407i \(0.342061\pi\)
\(908\) 0 0
\(909\) 1.15624e10 0.510595
\(910\) 0 0
\(911\) 2.57900e10 1.13015 0.565077 0.825038i \(-0.308846\pi\)
0.565077 + 0.825038i \(0.308846\pi\)
\(912\) 0 0
\(913\) 3.69889e10 1.60851
\(914\) 0 0
\(915\) −2.69671e10 −1.16375
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.71215e10 0.727674 0.363837 0.931463i \(-0.381467\pi\)
0.363837 + 0.931463i \(0.381467\pi\)
\(920\) 0 0
\(921\) −2.16985e10 −0.915212
\(922\) 0 0
\(923\) −1.10524e10 −0.462647
\(924\) 0 0
\(925\) 1.52646e10 0.634147
\(926\) 0 0
\(927\) −1.08982e9 −0.0449339
\(928\) 0 0
\(929\) 1.88157e10 0.769955 0.384977 0.922926i \(-0.374209\pi\)
0.384977 + 0.922926i \(0.374209\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.00844e10 0.406505
\(934\) 0 0
\(935\) −5.63742e10 −2.25548
\(936\) 0 0
\(937\) −3.85068e10 −1.52915 −0.764574 0.644537i \(-0.777050\pi\)
−0.764574 + 0.644537i \(0.777050\pi\)
\(938\) 0 0
\(939\) −2.00325e10 −0.789598
\(940\) 0 0
\(941\) 3.68708e10 1.44251 0.721254 0.692670i \(-0.243566\pi\)
0.721254 + 0.692670i \(0.243566\pi\)
\(942\) 0 0
\(943\) 2.42020e10 0.939856
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.57121e10 0.983813 0.491907 0.870648i \(-0.336300\pi\)
0.491907 + 0.870648i \(0.336300\pi\)
\(948\) 0 0
\(949\) 5.87178e9 0.223017
\(950\) 0 0
\(951\) −1.50724e10 −0.568265
\(952\) 0 0
\(953\) 1.04009e10 0.389265 0.194632 0.980876i \(-0.437649\pi\)
0.194632 + 0.980876i \(0.437649\pi\)
\(954\) 0 0
\(955\) −8.11075e10 −3.01335
\(956\) 0 0
\(957\) −5.45655e10 −2.01245
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.24977e10 −0.454255
\(962\) 0 0
\(963\) −1.19368e10 −0.430721
\(964\) 0 0
\(965\) −5.14996e10 −1.84484
\(966\) 0 0
\(967\) −4.78225e9 −0.170075 −0.0850374 0.996378i \(-0.527101\pi\)
−0.0850374 + 0.996378i \(0.527101\pi\)
\(968\) 0 0
\(969\) −1.53590e10 −0.542287
\(970\) 0 0
\(971\) 1.26459e10 0.443286 0.221643 0.975128i \(-0.428858\pi\)
0.221643 + 0.975128i \(0.428858\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −1.18821e10 −0.410560
\(976\) 0 0
\(977\) −4.90124e10 −1.68142 −0.840708 0.541488i \(-0.817861\pi\)
−0.840708 + 0.541488i \(0.817861\pi\)
\(978\) 0 0
\(979\) −1.26640e10 −0.431351
\(980\) 0 0
\(981\) 5.97464e9 0.202055
\(982\) 0 0
\(983\) 5.23089e10 1.75646 0.878229 0.478240i \(-0.158725\pi\)
0.878229 + 0.478240i \(0.158725\pi\)
\(984\) 0 0
\(985\) 1.87963e10 0.626680
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.31895e10 −0.762261
\(990\) 0 0
\(991\) 3.15694e10 1.03041 0.515203 0.857068i \(-0.327716\pi\)
0.515203 + 0.857068i \(0.327716\pi\)
\(992\) 0 0
\(993\) 3.02714e10 0.981094
\(994\) 0 0
\(995\) −7.29386e10 −2.34734
\(996\) 0 0
\(997\) 2.52871e9 0.0808102 0.0404051 0.999183i \(-0.487135\pi\)
0.0404051 + 0.999183i \(0.487135\pi\)
\(998\) 0 0
\(999\) −2.38130e9 −0.0755676
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.8.a.m.1.8 8
7.2 even 3 588.8.i.r.361.1 16
7.3 odd 6 588.8.i.q.373.8 16
7.4 even 3 588.8.i.r.373.1 16
7.5 odd 6 588.8.i.q.361.8 16
7.6 odd 2 588.8.a.n.1.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.8.a.m.1.8 8 1.1 even 1 trivial
588.8.a.n.1.1 yes 8 7.6 odd 2
588.8.i.q.361.8 16 7.5 odd 6
588.8.i.q.373.8 16 7.3 odd 6
588.8.i.r.361.1 16 7.2 even 3
588.8.i.r.373.1 16 7.4 even 3