L(s) = 1 | + (−5.03 + 1.28i)3-s − 19.3·5-s + (23.7 − 12.9i)9-s + 41.9i·11-s + 77.1i·13-s + (97.5 − 24.8i)15-s − 5.96·17-s + 68.1i·19-s − 35.5i·23-s + 250.·25-s + (−102. + 95.4i)27-s + 228. i·29-s + 72.0i·31-s + (−53.7 − 211. i)33-s + 69.3·37-s + ⋯ |
L(s) = 1 | + (−0.969 + 0.246i)3-s − 1.73·5-s + (0.878 − 0.478i)9-s + 1.14i·11-s + 1.64i·13-s + (1.67 − 0.427i)15-s − 0.0851·17-s + 0.823i·19-s − 0.322i·23-s + 2.00·25-s + (−0.733 + 0.680i)27-s + 1.46i·29-s + 0.417i·31-s + (−0.283 − 1.11i)33-s + 0.308·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.571 + 0.820i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.571 + 0.820i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.2142142943\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2142142943\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (5.03 - 1.28i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 19.3T + 125T^{2} \) |
| 11 | \( 1 - 41.9iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 77.1iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 5.96T + 4.91e3T^{2} \) |
| 19 | \( 1 - 68.1iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 35.5iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 228. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 72.0iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 69.3T + 5.06e4T^{2} \) |
| 41 | \( 1 + 132.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 366.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 181.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 17.6iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 494.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 575. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 404.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 489. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 388. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 253.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 356.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 1.42e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 694. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04171825872909376862291324917, −10.15672568949937118726117703207, −9.161566480769155410173346030567, −8.113832504746327648101384297419, −7.04446458809750726323383624337, −6.69074696986221005520547494652, −5.03887137887832541291397941681, −4.36996449417082036924796199386, −3.59681620869548234142096524272, −1.56062336692726040960130452546,
0.11453443179594399573839156868, 0.76627010068147160927620732579, 3.00456969659347311028396468760, 4.01955592451829000900086176342, 5.07621451728668222722268913408, 6.01328956649969192153837070827, 7.11124541081034382708186468005, 7.923845455399238293913514421830, 8.462050842371205266875372181571, 9.994211904922761320733977532370