L(s) = 1 | + (−5.03 + 1.28i)3-s − 19.3·5-s + (23.7 − 12.9i)9-s + 41.9i·11-s + 77.1i·13-s + (97.5 − 24.8i)15-s − 5.96·17-s + 68.1i·19-s − 35.5i·23-s + 250.·25-s + (−102. + 95.4i)27-s + 228. i·29-s + 72.0i·31-s + (−53.7 − 211. i)33-s + 69.3·37-s + ⋯ |
L(s) = 1 | + (−0.969 + 0.246i)3-s − 1.73·5-s + (0.878 − 0.478i)9-s + 1.14i·11-s + 1.64i·13-s + (1.67 − 0.427i)15-s − 0.0851·17-s + 0.823i·19-s − 0.322i·23-s + 2.00·25-s + (−0.733 + 0.680i)27-s + 1.46i·29-s + 0.417i·31-s + (−0.283 − 1.11i)33-s + 0.308·37-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(−0.571+0.820i)Λ(4−s)
Λ(s)=(=(588s/2ΓC(s+3/2)L(s)(−0.571+0.820i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
−0.571+0.820i
|
Analytic conductor: |
34.6931 |
Root analytic conductor: |
5.89008 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :3/2), −0.571+0.820i)
|
Particular Values
L(2) |
≈ |
0.2142142943 |
L(21) |
≈ |
0.2142142943 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(5.03−1.28i)T |
| 7 | 1 |
good | 5 | 1+19.3T+125T2 |
| 11 | 1−41.9iT−1.33e3T2 |
| 13 | 1−77.1iT−2.19e3T2 |
| 17 | 1+5.96T+4.91e3T2 |
| 19 | 1−68.1iT−6.85e3T2 |
| 23 | 1+35.5iT−1.21e4T2 |
| 29 | 1−228.iT−2.43e4T2 |
| 31 | 1−72.0iT−2.97e4T2 |
| 37 | 1−69.3T+5.06e4T2 |
| 41 | 1+132.T+6.89e4T2 |
| 43 | 1+366.T+7.95e4T2 |
| 47 | 1+181.T+1.03e5T2 |
| 53 | 1−17.6iT−1.48e5T2 |
| 59 | 1−494.T+2.05e5T2 |
| 61 | 1+575.iT−2.26e5T2 |
| 67 | 1+404.T+3.00e5T2 |
| 71 | 1−489.iT−3.57e5T2 |
| 73 | 1+388.iT−3.89e5T2 |
| 79 | 1−253.T+4.93e5T2 |
| 83 | 1−356.T+5.71e5T2 |
| 89 | 1+1.42e3T+7.04e5T2 |
| 97 | 1−694.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.04171825872909376862291324917, −10.15672568949937118726117703207, −9.161566480769155410173346030567, −8.113832504746327648101384297419, −7.04446458809750726323383624337, −6.69074696986221005520547494652, −5.03887137887832541291397941681, −4.36996449417082036924796199386, −3.59681620869548234142096524272, −1.56062336692726040960130452546,
0.11453443179594399573839156868, 0.76627010068147160927620732579, 3.00456969659347311028396468760, 4.01955592451829000900086176342, 5.07621451728668222722268913408, 6.01328956649969192153837070827, 7.11124541081034382708186468005, 7.923845455399238293913514421830, 8.462050842371205266875372181571, 9.994211904922761320733977532370