Properties

Label 588.4.f.c.293.2
Level $588$
Weight $4$
Character 588.293
Analytic conductor $34.693$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,4,Mod(293,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.293");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.6931230834\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 14 x^{10} - 32 x^{9} + 70 x^{8} + 224 x^{7} - 50 x^{6} + 2016 x^{5} + 5670 x^{4} + \cdots + 531441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{7} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 293.2
Root \(-2.14770 + 2.09461i\) of defining polynomial
Character \(\chi\) \(=\) 588.293
Dual form 588.4.f.c.293.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.03553 + 1.28196i) q^{3} -19.3778 q^{5} +(23.7132 - 12.9107i) q^{9} +41.9412i q^{11} +77.1820i q^{13} +(97.5776 - 24.8416i) q^{15} -5.96831 q^{17} +68.1654i q^{19} -35.5752i q^{23} +250.500 q^{25} +(-102.857 + 95.4115i) q^{27} +228.525i q^{29} +72.0520i q^{31} +(-53.7668 - 211.196i) q^{33} +69.3392 q^{37} +(-98.9442 - 388.652i) q^{39} -132.789 q^{41} -366.304 q^{43} +(-459.509 + 250.181i) q^{45} -181.908 q^{47} +(30.0536 - 7.65113i) q^{51} +17.6775i q^{53} -812.728i q^{55} +(-87.3853 - 343.249i) q^{57} +494.370 q^{59} -575.525i q^{61} -1495.62i q^{65} -404.323 q^{67} +(45.6060 + 179.140i) q^{69} +489.797i q^{71} -388.753i q^{73} +(-1261.40 + 321.131i) q^{75} +253.411 q^{79} +(395.628 - 612.307i) q^{81} +356.881 q^{83} +115.653 q^{85} +(-292.960 - 1150.75i) q^{87} -1423.16 q^{89} +(-92.3677 - 362.820i) q^{93} -1320.90i q^{95} +694.168i q^{97} +(541.489 + 994.557i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 168 q^{9} + 132 q^{15} + 888 q^{25} - 480 q^{37} + 864 q^{39} + 600 q^{51} + 180 q^{57} - 3960 q^{67} + 876 q^{79} - 2016 q^{81} - 6144 q^{85} - 1764 q^{93} + 9216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.03553 + 1.28196i −0.969089 + 0.246713i
\(4\) 0 0
\(5\) −19.3778 −1.73320 −0.866602 0.498999i \(-0.833701\pi\)
−0.866602 + 0.498999i \(0.833701\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 23.7132 12.9107i 0.878265 0.478174i
\(10\) 0 0
\(11\) 41.9412i 1.14961i 0.818290 + 0.574806i \(0.194923\pi\)
−0.818290 + 0.574806i \(0.805077\pi\)
\(12\) 0 0
\(13\) 77.1820i 1.64665i 0.567571 + 0.823325i \(0.307883\pi\)
−0.567571 + 0.823325i \(0.692117\pi\)
\(14\) 0 0
\(15\) 97.5776 24.8416i 1.67963 0.427604i
\(16\) 0 0
\(17\) −5.96831 −0.0851487 −0.0425743 0.999093i \(-0.513556\pi\)
−0.0425743 + 0.999093i \(0.513556\pi\)
\(18\) 0 0
\(19\) 68.1654i 0.823064i 0.911395 + 0.411532i \(0.135006\pi\)
−0.911395 + 0.411532i \(0.864994\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 35.5752i 0.322519i −0.986912 0.161260i \(-0.948444\pi\)
0.986912 0.161260i \(-0.0515557\pi\)
\(24\) 0 0
\(25\) 250.500 2.00400
\(26\) 0 0
\(27\) −102.857 + 95.4115i −0.733145 + 0.680072i
\(28\) 0 0
\(29\) 228.525i 1.46331i 0.681673 + 0.731657i \(0.261253\pi\)
−0.681673 + 0.731657i \(0.738747\pi\)
\(30\) 0 0
\(31\) 72.0520i 0.417449i 0.977974 + 0.208725i \(0.0669312\pi\)
−0.977974 + 0.208725i \(0.933069\pi\)
\(32\) 0 0
\(33\) −53.7668 211.196i −0.283624 1.11408i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 69.3392 0.308089 0.154045 0.988064i \(-0.450770\pi\)
0.154045 + 0.988064i \(0.450770\pi\)
\(38\) 0 0
\(39\) −98.9442 388.652i −0.406250 1.59575i
\(40\) 0 0
\(41\) −132.789 −0.505810 −0.252905 0.967491i \(-0.581386\pi\)
−0.252905 + 0.967491i \(0.581386\pi\)
\(42\) 0 0
\(43\) −366.304 −1.29909 −0.649544 0.760324i \(-0.725040\pi\)
−0.649544 + 0.760324i \(0.725040\pi\)
\(44\) 0 0
\(45\) −459.509 + 250.181i −1.52221 + 0.828773i
\(46\) 0 0
\(47\) −181.908 −0.564555 −0.282277 0.959333i \(-0.591090\pi\)
−0.282277 + 0.959333i \(0.591090\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 30.0536 7.65113i 0.0825166 0.0210073i
\(52\) 0 0
\(53\) 17.6775i 0.0458150i 0.999738 + 0.0229075i \(0.00729232\pi\)
−0.999738 + 0.0229075i \(0.992708\pi\)
\(54\) 0 0
\(55\) 812.728i 1.99251i
\(56\) 0 0
\(57\) −87.3853 343.249i −0.203061 0.797622i
\(58\) 0 0
\(59\) 494.370 1.09087 0.545437 0.838152i \(-0.316364\pi\)
0.545437 + 0.838152i \(0.316364\pi\)
\(60\) 0 0
\(61\) 575.525i 1.20801i −0.796981 0.604004i \(-0.793571\pi\)
0.796981 0.604004i \(-0.206429\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1495.62i 2.85398i
\(66\) 0 0
\(67\) −404.323 −0.737253 −0.368627 0.929578i \(-0.620172\pi\)
−0.368627 + 0.929578i \(0.620172\pi\)
\(68\) 0 0
\(69\) 45.6060 + 179.140i 0.0795697 + 0.312550i
\(70\) 0 0
\(71\) 489.797i 0.818707i 0.912376 + 0.409353i \(0.134246\pi\)
−0.912376 + 0.409353i \(0.865754\pi\)
\(72\) 0 0
\(73\) 388.753i 0.623290i −0.950199 0.311645i \(-0.899120\pi\)
0.950199 0.311645i \(-0.100880\pi\)
\(74\) 0 0
\(75\) −1261.40 + 321.131i −1.94205 + 0.494413i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 253.411 0.360899 0.180449 0.983584i \(-0.442245\pi\)
0.180449 + 0.983584i \(0.442245\pi\)
\(80\) 0 0
\(81\) 395.628 612.307i 0.542700 0.839927i
\(82\) 0 0
\(83\) 356.881 0.471961 0.235981 0.971758i \(-0.424170\pi\)
0.235981 + 0.971758i \(0.424170\pi\)
\(84\) 0 0
\(85\) 115.653 0.147580
\(86\) 0 0
\(87\) −292.960 1150.75i −0.361019 1.41808i
\(88\) 0 0
\(89\) −1423.16 −1.69499 −0.847496 0.530802i \(-0.821891\pi\)
−0.847496 + 0.530802i \(0.821891\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −92.3677 362.820i −0.102990 0.404545i
\(94\) 0 0
\(95\) 1320.90i 1.42654i
\(96\) 0 0
\(97\) 694.168i 0.726619i 0.931668 + 0.363310i \(0.118353\pi\)
−0.931668 + 0.363310i \(0.881647\pi\)
\(98\) 0 0
\(99\) 541.489 + 994.557i 0.549714 + 1.00966i
\(100\) 0 0
\(101\) 15.3407 0.0151134 0.00755671 0.999971i \(-0.497595\pi\)
0.00755671 + 0.999971i \(0.497595\pi\)
\(102\) 0 0
\(103\) 353.147i 0.337831i 0.985630 + 0.168916i \(0.0540266\pi\)
−0.985630 + 0.168916i \(0.945973\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 51.5191i 0.0465471i 0.999729 + 0.0232736i \(0.00740887\pi\)
−0.999729 + 0.0232736i \(0.992591\pi\)
\(108\) 0 0
\(109\) −670.628 −0.589308 −0.294654 0.955604i \(-0.595204\pi\)
−0.294654 + 0.955604i \(0.595204\pi\)
\(110\) 0 0
\(111\) −349.160 + 88.8901i −0.298566 + 0.0760097i
\(112\) 0 0
\(113\) 461.944i 0.384567i 0.981339 + 0.192283i \(0.0615893\pi\)
−0.981339 + 0.192283i \(0.938411\pi\)
\(114\) 0 0
\(115\) 689.370i 0.558992i
\(116\) 0 0
\(117\) 996.473 + 1830.23i 0.787384 + 1.44619i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −428.061 −0.321608
\(122\) 0 0
\(123\) 668.665 170.231i 0.490175 0.124790i
\(124\) 0 0
\(125\) −2431.91 −1.74014
\(126\) 0 0
\(127\) −388.699 −0.271587 −0.135793 0.990737i \(-0.543358\pi\)
−0.135793 + 0.990737i \(0.543358\pi\)
\(128\) 0 0
\(129\) 1844.53 469.586i 1.25893 0.320502i
\(130\) 0 0
\(131\) −627.675 −0.418628 −0.209314 0.977849i \(-0.567123\pi\)
−0.209314 + 0.977849i \(0.567123\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1993.15 1848.87i 1.27069 1.17870i
\(136\) 0 0
\(137\) 2104.21i 1.31222i −0.754664 0.656111i \(-0.772200\pi\)
0.754664 0.656111i \(-0.227800\pi\)
\(138\) 0 0
\(139\) 1030.03i 0.628533i −0.949335 0.314266i \(-0.898241\pi\)
0.949335 0.314266i \(-0.101759\pi\)
\(140\) 0 0
\(141\) 916.005 233.199i 0.547103 0.139283i
\(142\) 0 0
\(143\) −3237.10 −1.89301
\(144\) 0 0
\(145\) 4428.32i 2.53622i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 201.165i 0.110605i −0.998470 0.0553024i \(-0.982388\pi\)
0.998470 0.0553024i \(-0.0176123\pi\)
\(150\) 0 0
\(151\) 1192.48 0.642664 0.321332 0.946967i \(-0.395869\pi\)
0.321332 + 0.946967i \(0.395869\pi\)
\(152\) 0 0
\(153\) −141.527 + 77.0550i −0.0747831 + 0.0407158i
\(154\) 0 0
\(155\) 1396.21i 0.723525i
\(156\) 0 0
\(157\) 1092.22i 0.555215i 0.960695 + 0.277608i \(0.0895415\pi\)
−0.960695 + 0.277608i \(0.910459\pi\)
\(158\) 0 0
\(159\) −22.6619 89.0158i −0.0113032 0.0443988i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −579.604 −0.278516 −0.139258 0.990256i \(-0.544472\pi\)
−0.139258 + 0.990256i \(0.544472\pi\)
\(164\) 0 0
\(165\) 1041.88 + 4092.52i 0.491579 + 1.93092i
\(166\) 0 0
\(167\) 3715.71 1.72174 0.860869 0.508827i \(-0.169921\pi\)
0.860869 + 0.508827i \(0.169921\pi\)
\(168\) 0 0
\(169\) −3760.06 −1.71145
\(170\) 0 0
\(171\) 880.063 + 1616.42i 0.393568 + 0.722869i
\(172\) 0 0
\(173\) −1338.41 −0.588193 −0.294096 0.955776i \(-0.595019\pi\)
−0.294096 + 0.955776i \(0.595019\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2489.42 + 633.763i −1.05715 + 0.269133i
\(178\) 0 0
\(179\) 2818.71i 1.17698i 0.808503 + 0.588492i \(0.200278\pi\)
−0.808503 + 0.588492i \(0.799722\pi\)
\(180\) 0 0
\(181\) 3688.28i 1.51463i −0.653050 0.757315i \(-0.726511\pi\)
0.653050 0.757315i \(-0.273489\pi\)
\(182\) 0 0
\(183\) 737.800 + 2898.08i 0.298031 + 1.17067i
\(184\) 0 0
\(185\) −1343.64 −0.533982
\(186\) 0 0
\(187\) 250.318i 0.0978879i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4509.14i 1.70822i 0.520092 + 0.854111i \(0.325898\pi\)
−0.520092 + 0.854111i \(0.674102\pi\)
\(192\) 0 0
\(193\) −2211.49 −0.824802 −0.412401 0.911002i \(-0.635310\pi\)
−0.412401 + 0.911002i \(0.635310\pi\)
\(194\) 0 0
\(195\) 1917.32 + 7531.24i 0.704114 + 2.76576i
\(196\) 0 0
\(197\) 4177.21i 1.51073i −0.655304 0.755365i \(-0.727460\pi\)
0.655304 0.755365i \(-0.272540\pi\)
\(198\) 0 0
\(199\) 4415.17i 1.57278i 0.617730 + 0.786391i \(0.288053\pi\)
−0.617730 + 0.786391i \(0.711947\pi\)
\(200\) 0 0
\(201\) 2035.98 518.326i 0.714463 0.181890i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2573.17 0.876673
\(206\) 0 0
\(207\) −459.300 843.601i −0.154220 0.283257i
\(208\) 0 0
\(209\) −2858.94 −0.946205
\(210\) 0 0
\(211\) −2002.19 −0.653252 −0.326626 0.945154i \(-0.605912\pi\)
−0.326626 + 0.945154i \(0.605912\pi\)
\(212\) 0 0
\(213\) −627.899 2466.39i −0.201986 0.793399i
\(214\) 0 0
\(215\) 7098.17 2.25159
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 498.366 + 1957.58i 0.153774 + 0.604023i
\(220\) 0 0
\(221\) 460.646i 0.140210i
\(222\) 0 0
\(223\) 2122.04i 0.637230i −0.947884 0.318615i \(-0.896782\pi\)
0.947884 0.318615i \(-0.103218\pi\)
\(224\) 0 0
\(225\) 5940.14 3234.13i 1.76004 0.958260i
\(226\) 0 0
\(227\) 4862.82 1.42184 0.710918 0.703274i \(-0.248280\pi\)
0.710918 + 0.703274i \(0.248280\pi\)
\(228\) 0 0
\(229\) 5662.03i 1.63387i 0.576726 + 0.816937i \(0.304330\pi\)
−0.576726 + 0.816937i \(0.695670\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3253.73i 0.914846i −0.889249 0.457423i \(-0.848772\pi\)
0.889249 0.457423i \(-0.151228\pi\)
\(234\) 0 0
\(235\) 3524.99 0.978489
\(236\) 0 0
\(237\) −1276.06 + 324.863i −0.349743 + 0.0890385i
\(238\) 0 0
\(239\) 5823.69i 1.57616i 0.615571 + 0.788082i \(0.288926\pi\)
−0.615571 + 0.788082i \(0.711074\pi\)
\(240\) 0 0
\(241\) 6176.56i 1.65090i −0.564474 0.825451i \(-0.690921\pi\)
0.564474 0.825451i \(-0.309079\pi\)
\(242\) 0 0
\(243\) −1207.25 + 3590.47i −0.318703 + 0.947855i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5261.14 −1.35530
\(248\) 0 0
\(249\) −1797.09 + 457.507i −0.457372 + 0.116439i
\(250\) 0 0
\(251\) −1648.38 −0.414522 −0.207261 0.978286i \(-0.566455\pi\)
−0.207261 + 0.978286i \(0.566455\pi\)
\(252\) 0 0
\(253\) 1492.07 0.370772
\(254\) 0 0
\(255\) −582.373 + 148.262i −0.143018 + 0.0364099i
\(256\) 0 0
\(257\) 3204.54 0.777797 0.388899 0.921281i \(-0.372856\pi\)
0.388899 + 0.921281i \(0.372856\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2950.42 + 5419.06i 0.699718 + 1.28518i
\(262\) 0 0
\(263\) 3459.42i 0.811092i 0.914075 + 0.405546i \(0.132919\pi\)
−0.914075 + 0.405546i \(0.867081\pi\)
\(264\) 0 0
\(265\) 342.552i 0.0794068i
\(266\) 0 0
\(267\) 7166.35 1824.43i 1.64260 0.418177i
\(268\) 0 0
\(269\) 1330.60 0.301591 0.150795 0.988565i \(-0.451817\pi\)
0.150795 + 0.988565i \(0.451817\pi\)
\(270\) 0 0
\(271\) 3342.15i 0.749157i −0.927195 0.374578i \(-0.877788\pi\)
0.927195 0.374578i \(-0.122212\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10506.3i 2.30382i
\(276\) 0 0
\(277\) −4801.14 −1.04142 −0.520709 0.853734i \(-0.674332\pi\)
−0.520709 + 0.853734i \(0.674332\pi\)
\(278\) 0 0
\(279\) 930.241 + 1708.58i 0.199613 + 0.366631i
\(280\) 0 0
\(281\) 4548.87i 0.965704i −0.875702 0.482852i \(-0.839601\pi\)
0.875702 0.482852i \(-0.160399\pi\)
\(282\) 0 0
\(283\) 4529.79i 0.951477i −0.879587 0.475739i \(-0.842181\pi\)
0.879587 0.475739i \(-0.157819\pi\)
\(284\) 0 0
\(285\) 1693.34 + 6651.42i 0.351946 + 1.38244i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4877.38 −0.992750
\(290\) 0 0
\(291\) −889.895 3495.50i −0.179266 0.704158i
\(292\) 0 0
\(293\) 9525.19 1.89921 0.949603 0.313454i \(-0.101486\pi\)
0.949603 + 0.313454i \(0.101486\pi\)
\(294\) 0 0
\(295\) −9579.82 −1.89071
\(296\) 0 0
\(297\) −4001.67 4313.96i −0.781819 0.842833i
\(298\) 0 0
\(299\) 2745.77 0.531076
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −77.2485 + 19.6661i −0.0146462 + 0.00372868i
\(304\) 0 0
\(305\) 11152.4i 2.09372i
\(306\) 0 0
\(307\) 3743.83i 0.696000i −0.937495 0.348000i \(-0.886861\pi\)
0.937495 0.348000i \(-0.113139\pi\)
\(308\) 0 0
\(309\) −452.720 1778.28i −0.0833475 0.327389i
\(310\) 0 0
\(311\) 10403.0 1.89679 0.948393 0.317098i \(-0.102708\pi\)
0.948393 + 0.317098i \(0.102708\pi\)
\(312\) 0 0
\(313\) 3291.03i 0.594313i −0.954829 0.297157i \(-0.903962\pi\)
0.954829 0.297157i \(-0.0960384\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5978.80i 1.05931i −0.848212 0.529657i \(-0.822321\pi\)
0.848212 0.529657i \(-0.177679\pi\)
\(318\) 0 0
\(319\) −9584.62 −1.68224
\(320\) 0 0
\(321\) −66.0454 259.426i −0.0114838 0.0451083i
\(322\) 0 0
\(323\) 406.832i 0.0700828i
\(324\) 0 0
\(325\) 19334.1i 3.29988i
\(326\) 0 0
\(327\) 3376.97 859.718i 0.571091 0.145390i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 41.8338 0.00694680 0.00347340 0.999994i \(-0.498894\pi\)
0.00347340 + 0.999994i \(0.498894\pi\)
\(332\) 0 0
\(333\) 1644.25 895.218i 0.270584 0.147320i
\(334\) 0 0
\(335\) 7834.90 1.27781
\(336\) 0 0
\(337\) −5477.82 −0.885447 −0.442723 0.896658i \(-0.645988\pi\)
−0.442723 + 0.896658i \(0.645988\pi\)
\(338\) 0 0
\(339\) −592.194 2326.13i −0.0948777 0.372679i
\(340\) 0 0
\(341\) −3021.95 −0.479905
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −883.744 3471.34i −0.137911 0.541713i
\(346\) 0 0
\(347\) 1106.21i 0.171136i −0.996332 0.0855681i \(-0.972729\pi\)
0.996332 0.0855681i \(-0.0272705\pi\)
\(348\) 0 0
\(349\) 7172.24i 1.10006i −0.835145 0.550030i \(-0.814616\pi\)
0.835145 0.550030i \(-0.185384\pi\)
\(350\) 0 0
\(351\) −7364.05 7938.74i −1.11984 1.20723i
\(352\) 0 0
\(353\) −7373.73 −1.11180 −0.555898 0.831251i \(-0.687625\pi\)
−0.555898 + 0.831251i \(0.687625\pi\)
\(354\) 0 0
\(355\) 9491.19i 1.41899i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 955.590i 0.140485i 0.997530 + 0.0702425i \(0.0223773\pi\)
−0.997530 + 0.0702425i \(0.977623\pi\)
\(360\) 0 0
\(361\) 2212.48 0.322566
\(362\) 0 0
\(363\) 2155.51 548.756i 0.311667 0.0793450i
\(364\) 0 0
\(365\) 7533.19i 1.08029i
\(366\) 0 0
\(367\) 5699.26i 0.810624i −0.914178 0.405312i \(-0.867163\pi\)
0.914178 0.405312i \(-0.132837\pi\)
\(368\) 0 0
\(369\) −3148.86 + 1714.40i −0.444235 + 0.241865i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 9914.06 1.37622 0.688111 0.725606i \(-0.258440\pi\)
0.688111 + 0.725606i \(0.258440\pi\)
\(374\) 0 0
\(375\) 12246.0 3117.61i 1.68635 0.429314i
\(376\) 0 0
\(377\) −17638.1 −2.40956
\(378\) 0 0
\(379\) 8051.92 1.09129 0.545646 0.838016i \(-0.316284\pi\)
0.545646 + 0.838016i \(0.316284\pi\)
\(380\) 0 0
\(381\) 1957.31 498.297i 0.263191 0.0670040i
\(382\) 0 0
\(383\) 4368.43 0.582810 0.291405 0.956600i \(-0.405877\pi\)
0.291405 + 0.956600i \(0.405877\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8686.22 + 4729.23i −1.14094 + 0.621190i
\(388\) 0 0
\(389\) 2451.96i 0.319586i 0.987151 + 0.159793i \(0.0510828\pi\)
−0.987151 + 0.159793i \(0.948917\pi\)
\(390\) 0 0
\(391\) 212.324i 0.0274621i
\(392\) 0 0
\(393\) 3160.68 804.654i 0.405687 0.103281i
\(394\) 0 0
\(395\) −4910.56 −0.625511
\(396\) 0 0
\(397\) 8408.87i 1.06305i −0.847044 0.531523i \(-0.821620\pi\)
0.847044 0.531523i \(-0.178380\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8037.63i 1.00095i 0.865751 + 0.500474i \(0.166841\pi\)
−0.865751 + 0.500474i \(0.833159\pi\)
\(402\) 0 0
\(403\) −5561.12 −0.687392
\(404\) 0 0
\(405\) −7666.41 + 11865.2i −0.940610 + 1.45577i
\(406\) 0 0
\(407\) 2908.17i 0.354183i
\(408\) 0 0
\(409\) 4916.56i 0.594396i 0.954816 + 0.297198i \(0.0960522\pi\)
−0.954816 + 0.297198i \(0.903948\pi\)
\(410\) 0 0
\(411\) 2697.51 + 10595.8i 0.323743 + 1.27166i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −6915.58 −0.818006
\(416\) 0 0
\(417\) 1320.46 + 5186.75i 0.155067 + 0.609104i
\(418\) 0 0
\(419\) 4713.84 0.549608 0.274804 0.961500i \(-0.411387\pi\)
0.274804 + 0.961500i \(0.411387\pi\)
\(420\) 0 0
\(421\) 9921.92 1.14861 0.574305 0.818641i \(-0.305272\pi\)
0.574305 + 0.818641i \(0.305272\pi\)
\(422\) 0 0
\(423\) −4313.62 + 2348.56i −0.495829 + 0.269955i
\(424\) 0 0
\(425\) −1495.06 −0.170638
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 16300.5 4149.83i 1.83449 0.467030i
\(430\) 0 0
\(431\) 12587.4i 1.40676i −0.710814 0.703380i \(-0.751673\pi\)
0.710814 0.703380i \(-0.248327\pi\)
\(432\) 0 0
\(433\) 3715.19i 0.412334i 0.978517 + 0.206167i \(0.0660989\pi\)
−0.978517 + 0.206167i \(0.933901\pi\)
\(434\) 0 0
\(435\) 5676.93 + 22299.0i 0.625719 + 2.45782i
\(436\) 0 0
\(437\) 2425.00 0.265454
\(438\) 0 0
\(439\) 5865.27i 0.637663i 0.947811 + 0.318831i \(0.103290\pi\)
−0.947811 + 0.318831i \(0.896710\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15440.8i 1.65601i −0.560720 0.828005i \(-0.689476\pi\)
0.560720 0.828005i \(-0.310524\pi\)
\(444\) 0 0
\(445\) 27577.7 2.93777
\(446\) 0 0
\(447\) 257.886 + 1012.98i 0.0272877 + 0.107186i
\(448\) 0 0
\(449\) 16373.4i 1.72095i −0.509491 0.860476i \(-0.670166\pi\)
0.509491 0.860476i \(-0.329834\pi\)
\(450\) 0 0
\(451\) 5569.34i 0.581486i
\(452\) 0 0
\(453\) −6004.75 + 1528.70i −0.622798 + 0.158554i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2754.42 0.281940 0.140970 0.990014i \(-0.454978\pi\)
0.140970 + 0.990014i \(0.454978\pi\)
\(458\) 0 0
\(459\) 613.885 569.445i 0.0624263 0.0579072i
\(460\) 0 0
\(461\) −15142.3 −1.52982 −0.764909 0.644139i \(-0.777216\pi\)
−0.764909 + 0.644139i \(0.777216\pi\)
\(462\) 0 0
\(463\) −10138.9 −1.01770 −0.508851 0.860855i \(-0.669930\pi\)
−0.508851 + 0.860855i \(0.669930\pi\)
\(464\) 0 0
\(465\) 1789.89 + 7030.67i 0.178503 + 0.701160i
\(466\) 0 0
\(467\) −16149.3 −1.60021 −0.800106 0.599858i \(-0.795224\pi\)
−0.800106 + 0.599858i \(0.795224\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1400.18 5499.92i −0.136979 0.538053i
\(472\) 0 0
\(473\) 15363.2i 1.49345i
\(474\) 0 0
\(475\) 17075.4i 1.64942i
\(476\) 0 0
\(477\) 228.229 + 419.190i 0.0219075 + 0.0402377i
\(478\) 0 0
\(479\) −8419.81 −0.803154 −0.401577 0.915825i \(-0.631538\pi\)
−0.401577 + 0.915825i \(0.631538\pi\)
\(480\) 0 0
\(481\) 5351.74i 0.507315i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13451.5i 1.25938i
\(486\) 0 0
\(487\) −14078.2 −1.30995 −0.654975 0.755651i \(-0.727321\pi\)
−0.654975 + 0.755651i \(0.727321\pi\)
\(488\) 0 0
\(489\) 2918.61 743.029i 0.269907 0.0687135i
\(490\) 0 0
\(491\) 17853.2i 1.64094i 0.571688 + 0.820471i \(0.306289\pi\)
−0.571688 + 0.820471i \(0.693711\pi\)
\(492\) 0 0
\(493\) 1363.91i 0.124599i
\(494\) 0 0
\(495\) −10492.9 19272.4i −0.952768 1.74996i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13605.8 1.22060 0.610298 0.792172i \(-0.291050\pi\)
0.610298 + 0.792172i \(0.291050\pi\)
\(500\) 0 0
\(501\) −18710.6 + 4763.38i −1.66852 + 0.424775i
\(502\) 0 0
\(503\) 7503.79 0.665164 0.332582 0.943074i \(-0.392080\pi\)
0.332582 + 0.943074i \(0.392080\pi\)
\(504\) 0 0
\(505\) −297.269 −0.0261946
\(506\) 0 0
\(507\) 18933.9 4820.25i 1.65855 0.422238i
\(508\) 0 0
\(509\) −10479.2 −0.912541 −0.456270 0.889841i \(-0.650815\pi\)
−0.456270 + 0.889841i \(0.650815\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −6503.76 7011.32i −0.559743 0.603425i
\(514\) 0 0
\(515\) 6843.22i 0.585531i
\(516\) 0 0
\(517\) 7629.45i 0.649019i
\(518\) 0 0
\(519\) 6739.60 1715.79i 0.570011 0.145115i
\(520\) 0 0
\(521\) −7295.75 −0.613498 −0.306749 0.951790i \(-0.599241\pi\)
−0.306749 + 0.951790i \(0.599241\pi\)
\(522\) 0 0
\(523\) 15195.0i 1.27043i 0.772337 + 0.635213i \(0.219088\pi\)
−0.772337 + 0.635213i \(0.780912\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 430.029i 0.0355452i
\(528\) 0 0
\(529\) 10901.4 0.895981
\(530\) 0 0
\(531\) 11723.1 6382.66i 0.958076 0.521627i
\(532\) 0 0
\(533\) 10249.0i 0.832892i
\(534\) 0 0
\(535\) 998.328i 0.0806757i
\(536\) 0 0
\(537\) −3613.47 14193.7i −0.290377 1.14060i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −18373.2 −1.46012 −0.730061 0.683382i \(-0.760508\pi\)
−0.730061 + 0.683382i \(0.760508\pi\)
\(542\) 0 0
\(543\) 4728.23 + 18572.5i 0.373679 + 1.46781i
\(544\) 0 0
\(545\) 12995.3 1.02139
\(546\) 0 0
\(547\) −20764.3 −1.62307 −0.811534 0.584305i \(-0.801367\pi\)
−0.811534 + 0.584305i \(0.801367\pi\)
\(548\) 0 0
\(549\) −7430.43 13647.5i −0.577637 1.06095i
\(550\) 0 0
\(551\) −15577.5 −1.20440
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 6765.96 1722.50i 0.517476 0.131740i
\(556\) 0 0
\(557\) 5210.25i 0.396347i −0.980167 0.198174i \(-0.936499\pi\)
0.980167 0.198174i \(-0.0635010\pi\)
\(558\) 0 0
\(559\) 28272.1i 2.13914i
\(560\) 0 0
\(561\) 320.897 + 1260.48i 0.0241502 + 0.0948621i
\(562\) 0 0
\(563\) −10188.7 −0.762703 −0.381351 0.924430i \(-0.624541\pi\)
−0.381351 + 0.924430i \(0.624541\pi\)
\(564\) 0 0
\(565\) 8951.47i 0.666533i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1867.77i 0.137612i 0.997630 + 0.0688059i \(0.0219189\pi\)
−0.997630 + 0.0688059i \(0.978081\pi\)
\(570\) 0 0
\(571\) −908.844 −0.0666094 −0.0333047 0.999445i \(-0.510603\pi\)
−0.0333047 + 0.999445i \(0.510603\pi\)
\(572\) 0 0
\(573\) −5780.54 22705.9i −0.421441 1.65542i
\(574\) 0 0
\(575\) 8911.59i 0.646328i
\(576\) 0 0
\(577\) 15044.2i 1.08544i −0.839914 0.542720i \(-0.817395\pi\)
0.839914 0.542720i \(-0.182605\pi\)
\(578\) 0 0
\(579\) 11136.1 2835.05i 0.799307 0.203490i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −741.416 −0.0526695
\(584\) 0 0
\(585\) −19309.5 35465.9i −1.36470 2.50655i
\(586\) 0 0
\(587\) −22979.9 −1.61581 −0.807906 0.589312i \(-0.799399\pi\)
−0.807906 + 0.589312i \(0.799399\pi\)
\(588\) 0 0
\(589\) −4911.46 −0.343587
\(590\) 0 0
\(591\) 5355.01 + 21034.5i 0.372717 + 1.46403i
\(592\) 0 0
\(593\) −4220.66 −0.292279 −0.146140 0.989264i \(-0.546685\pi\)
−0.146140 + 0.989264i \(0.546685\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5660.07 22232.8i −0.388026 1.52416i
\(598\) 0 0
\(599\) 22561.2i 1.53894i −0.638682 0.769471i \(-0.720520\pi\)
0.638682 0.769471i \(-0.279480\pi\)
\(600\) 0 0
\(601\) 2004.06i 0.136019i 0.997685 + 0.0680095i \(0.0216648\pi\)
−0.997685 + 0.0680095i \(0.978335\pi\)
\(602\) 0 0
\(603\) −9587.78 + 5220.09i −0.647504 + 0.352535i
\(604\) 0 0
\(605\) 8294.88 0.557413
\(606\) 0 0
\(607\) 9819.23i 0.656590i −0.944575 0.328295i \(-0.893526\pi\)
0.944575 0.328295i \(-0.106474\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14040.1i 0.929623i
\(612\) 0 0
\(613\) −18993.4 −1.25145 −0.625724 0.780044i \(-0.715196\pi\)
−0.625724 + 0.780044i \(0.715196\pi\)
\(614\) 0 0
\(615\) −12957.3 + 3298.70i −0.849573 + 0.216287i
\(616\) 0 0
\(617\) 13306.4i 0.868223i 0.900859 + 0.434112i \(0.142938\pi\)
−0.900859 + 0.434112i \(0.857062\pi\)
\(618\) 0 0
\(619\) 1860.24i 0.120791i −0.998175 0.0603953i \(-0.980764\pi\)
0.998175 0.0603953i \(-0.0192361\pi\)
\(620\) 0 0
\(621\) 3394.28 + 3659.17i 0.219336 + 0.236453i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15812.7 1.01201
\(626\) 0 0
\(627\) 14396.3 3665.04i 0.916956 0.233441i
\(628\) 0 0
\(629\) −413.838 −0.0262334
\(630\) 0 0
\(631\) 16908.2 1.06673 0.533364 0.845886i \(-0.320928\pi\)
0.533364 + 0.845886i \(0.320928\pi\)
\(632\) 0 0
\(633\) 10082.1 2566.72i 0.633059 0.161166i
\(634\) 0 0
\(635\) 7532.15 0.470715
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 6323.61 + 11614.6i 0.391484 + 0.719042i
\(640\) 0 0
\(641\) 5036.02i 0.310313i 0.987890 + 0.155157i \(0.0495882\pi\)
−0.987890 + 0.155157i \(0.950412\pi\)
\(642\) 0 0
\(643\) 7842.19i 0.480973i 0.970652 + 0.240487i \(0.0773070\pi\)
−0.970652 + 0.240487i \(0.922693\pi\)
\(644\) 0 0
\(645\) −35743.0 + 9099.56i −2.18199 + 0.555496i
\(646\) 0 0
\(647\) 10476.6 0.636599 0.318299 0.947990i \(-0.396888\pi\)
0.318299 + 0.947990i \(0.396888\pi\)
\(648\) 0 0
\(649\) 20734.5i 1.25408i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12615.9i 0.756049i 0.925796 + 0.378025i \(0.123397\pi\)
−0.925796 + 0.378025i \(0.876603\pi\)
\(654\) 0 0
\(655\) 12163.0 0.725567
\(656\) 0 0
\(657\) −5019.08 9218.57i −0.298041 0.547414i
\(658\) 0 0
\(659\) 1347.17i 0.0796334i 0.999207 + 0.0398167i \(0.0126774\pi\)
−0.999207 + 0.0398167i \(0.987323\pi\)
\(660\) 0 0
\(661\) 3775.45i 0.222161i −0.993811 0.111080i \(-0.964569\pi\)
0.993811 0.111080i \(-0.0354311\pi\)
\(662\) 0 0
\(663\) 590.529 + 2319.60i 0.0345916 + 0.135876i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8129.84 0.471947
\(668\) 0 0
\(669\) 2720.37 + 10685.6i 0.157213 + 0.617532i
\(670\) 0 0
\(671\) 24138.2 1.38874
\(672\) 0 0
\(673\) 27877.7 1.59674 0.798370 0.602167i \(-0.205696\pi\)
0.798370 + 0.602167i \(0.205696\pi\)
\(674\) 0 0
\(675\) −25765.8 + 23900.6i −1.46922 + 1.36286i
\(676\) 0 0
\(677\) 20345.0 1.15498 0.577492 0.816397i \(-0.304032\pi\)
0.577492 + 0.816397i \(0.304032\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −24486.9 + 6233.94i −1.37789 + 0.350786i
\(682\) 0 0
\(683\) 12596.6i 0.705703i 0.935679 + 0.352852i \(0.114788\pi\)
−0.935679 + 0.352852i \(0.885212\pi\)
\(684\) 0 0
\(685\) 40774.9i 2.27435i
\(686\) 0 0
\(687\) −7258.49 28511.3i −0.403098 1.58337i
\(688\) 0 0
\(689\) −1364.39 −0.0754412
\(690\) 0 0
\(691\) 9810.01i 0.540073i 0.962850 + 0.270037i \(0.0870358\pi\)
−0.962850 + 0.270037i \(0.912964\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 19959.7i 1.08938i
\(696\) 0 0
\(697\) 792.528 0.0430691
\(698\) 0 0
\(699\) 4171.15 + 16384.3i 0.225705 + 0.886567i
\(700\) 0 0
\(701\) 21928.4i 1.18149i 0.806858 + 0.590746i \(0.201166\pi\)
−0.806858 + 0.590746i \(0.798834\pi\)
\(702\) 0 0
\(703\) 4726.54i 0.253577i
\(704\) 0 0
\(705\) −17750.2 + 4518.89i −0.948242 + 0.241406i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −20021.8 −1.06056 −0.530279 0.847823i \(-0.677913\pi\)
−0.530279 + 0.847823i \(0.677913\pi\)
\(710\) 0 0
\(711\) 6009.18 3271.72i 0.316965 0.172572i
\(712\) 0 0
\(713\) 2563.27 0.134635
\(714\) 0 0
\(715\) 62728.0 3.28097
\(716\) 0 0
\(717\) −7465.73 29325.4i −0.388860 1.52744i
\(718\) 0 0
\(719\) −12521.2 −0.649462 −0.324731 0.945806i \(-0.605274\pi\)
−0.324731 + 0.945806i \(0.605274\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 7918.10 + 31102.3i 0.407299 + 1.59987i
\(724\) 0 0
\(725\) 57245.6i 2.93248i
\(726\) 0 0
\(727\) 27158.2i 1.38547i 0.721190 + 0.692737i \(0.243595\pi\)
−0.721190 + 0.692737i \(0.756405\pi\)
\(728\) 0 0
\(729\) 1476.29 19627.6i 0.0750034 0.997183i
\(730\) 0 0
\(731\) 2186.21 0.110616
\(732\) 0 0
\(733\) 5443.32i 0.274289i −0.990551 0.137144i \(-0.956208\pi\)
0.990551 0.137144i \(-0.0437924\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16957.8i 0.847555i
\(738\) 0 0
\(739\) 26773.2 1.33270 0.666351 0.745638i \(-0.267855\pi\)
0.666351 + 0.745638i \(0.267855\pi\)
\(740\) 0 0
\(741\) 26492.7 6744.57i 1.31340 0.334370i
\(742\) 0 0
\(743\) 6409.29i 0.316466i 0.987402 + 0.158233i \(0.0505797\pi\)
−0.987402 + 0.158233i \(0.949420\pi\)
\(744\) 0 0
\(745\) 3898.15i 0.191701i
\(746\) 0 0
\(747\) 8462.78 4607.58i 0.414507 0.225680i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 18015.4 0.875353 0.437676 0.899133i \(-0.355802\pi\)
0.437676 + 0.899133i \(0.355802\pi\)
\(752\) 0 0
\(753\) 8300.49 2113.16i 0.401709 0.102268i
\(754\) 0 0
\(755\) −23107.6 −1.11387
\(756\) 0 0
\(757\) 4064.93 0.195168 0.0975840 0.995227i \(-0.468889\pi\)
0.0975840 + 0.995227i \(0.468889\pi\)
\(758\) 0 0
\(759\) −7513.34 + 1912.77i −0.359311 + 0.0914743i
\(760\) 0 0
\(761\) 21439.1 1.02124 0.510621 0.859806i \(-0.329416\pi\)
0.510621 + 0.859806i \(0.329416\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2742.49 1493.16i 0.129614 0.0705689i
\(766\) 0 0
\(767\) 38156.5i 1.79629i
\(768\) 0 0
\(769\) 18622.9i 0.873286i 0.899635 + 0.436643i \(0.143833\pi\)
−0.899635 + 0.436643i \(0.856167\pi\)
\(770\) 0 0
\(771\) −16136.6 + 4108.09i −0.753754 + 0.191893i
\(772\) 0 0
\(773\) 41572.5 1.93436 0.967180 0.254094i \(-0.0817771\pi\)
0.967180 + 0.254094i \(0.0817771\pi\)
\(774\) 0 0
\(775\) 18049.0i 0.836568i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9051.64i 0.416314i
\(780\) 0 0
\(781\) −20542.6 −0.941195
\(782\) 0 0
\(783\) −21804.0 23505.5i −0.995159 1.07282i
\(784\) 0 0
\(785\) 21164.9i 0.962301i
\(786\) 0 0
\(787\) 3432.99i 0.155493i 0.996973 + 0.0777463i \(0.0247724\pi\)
−0.996973 + 0.0777463i \(0.975228\pi\)
\(788\) 0 0
\(789\) −4434.84 17420.0i −0.200107 0.786020i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 44420.2 1.98916
\(794\) 0 0
\(795\) 439.138 + 1724.93i 0.0195907 + 0.0769522i
\(796\) 0 0
\(797\) 9577.83 0.425676 0.212838 0.977087i \(-0.431729\pi\)
0.212838 + 0.977087i \(0.431729\pi\)
\(798\) 0 0
\(799\) 1085.69 0.0480711
\(800\) 0 0
\(801\) −33747.5 + 18373.9i −1.48865 + 0.810501i
\(802\) 0 0
\(803\) 16304.8 0.716541
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6700.26 + 1705.77i −0.292268 + 0.0744063i
\(808\) 0 0
\(809\) 14083.6i 0.612054i −0.952023 0.306027i \(-0.901000\pi\)
0.952023 0.306027i \(-0.0989998\pi\)
\(810\) 0 0
\(811\) 8029.38i 0.347657i 0.984776 + 0.173828i \(0.0556138\pi\)
−0.984776 + 0.173828i \(0.944386\pi\)
\(812\) 0 0
\(813\) 4284.50 + 16829.5i 0.184827 + 0.725999i
\(814\) 0 0
\(815\) 11231.5 0.482725
\(816\) 0 0
\(817\) 24969.2i 1.06923i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 17786.4i 0.756088i 0.925788 + 0.378044i \(0.123403\pi\)
−0.925788 + 0.378044i \(0.876597\pi\)
\(822\) 0 0
\(823\) −9518.53 −0.403153 −0.201577 0.979473i \(-0.564607\pi\)
−0.201577 + 0.979473i \(0.564607\pi\)
\(824\) 0 0
\(825\) −13468.6 52904.6i −0.568383 2.23261i
\(826\) 0 0
\(827\) 37498.5i 1.57672i −0.615212 0.788362i \(-0.710929\pi\)
0.615212 0.788362i \(-0.289071\pi\)
\(828\) 0 0
\(829\) 27505.4i 1.15235i 0.817325 + 0.576176i \(0.195456\pi\)
−0.817325 + 0.576176i \(0.804544\pi\)
\(830\) 0 0
\(831\) 24176.3 6154.87i 1.00923 0.256931i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −72002.3 −2.98412
\(836\) 0 0
\(837\) −6874.59 7411.08i −0.283896 0.306051i
\(838\) 0 0
\(839\) 2040.23 0.0839528 0.0419764 0.999119i \(-0.486635\pi\)
0.0419764 + 0.999119i \(0.486635\pi\)
\(840\) 0 0
\(841\) −27834.9 −1.14129
\(842\) 0 0
\(843\) 5831.47 + 22906.0i 0.238252 + 0.935853i
\(844\) 0 0
\(845\) 72861.8 2.96630
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 5807.00 + 22809.9i 0.234742 + 0.922066i
\(850\) 0 0
\(851\) 2466.76i 0.0993647i
\(852\) 0 0
\(853\) 22267.7i 0.893825i 0.894578 + 0.446913i \(0.147476\pi\)
−0.894578 + 0.446913i \(0.852524\pi\)
\(854\) 0 0
\(855\) −17053.7 31322.6i −0.682133 1.25288i
\(856\) 0 0
\(857\) −27422.4 −1.09303 −0.546517 0.837448i \(-0.684047\pi\)
−0.546517 + 0.837448i \(0.684047\pi\)
\(858\) 0 0
\(859\) 43825.7i 1.74076i 0.492381 + 0.870380i \(0.336127\pi\)
−0.492381 + 0.870380i \(0.663873\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26852.8i 1.05919i 0.848250 + 0.529595i \(0.177656\pi\)
−0.848250 + 0.529595i \(0.822344\pi\)
\(864\) 0 0
\(865\) 25935.4 1.01946
\(866\) 0 0
\(867\) 24560.2 6252.60i 0.962062 0.244924i
\(868\) 0 0
\(869\) 10628.4i 0.414894i
\(870\) 0 0
\(871\) 31206.5i 1.21400i
\(872\) 0 0
\(873\) 8962.18 + 16460.9i 0.347450 + 0.638164i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −39115.3 −1.50608 −0.753039 0.657976i \(-0.771413\pi\)
−0.753039 + 0.657976i \(0.771413\pi\)
\(878\) 0 0
\(879\) −47964.4 + 12210.9i −1.84050 + 0.468559i
\(880\) 0 0
\(881\) 39685.7 1.51764 0.758822 0.651299i \(-0.225775\pi\)
0.758822 + 0.651299i \(0.225775\pi\)
\(882\) 0 0
\(883\) −37785.0 −1.44005 −0.720026 0.693947i \(-0.755870\pi\)
−0.720026 + 0.693947i \(0.755870\pi\)
\(884\) 0 0
\(885\) 48239.5 12280.9i 1.83226 0.466462i
\(886\) 0 0
\(887\) 14665.4 0.555148 0.277574 0.960704i \(-0.410470\pi\)
0.277574 + 0.960704i \(0.410470\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 25680.8 + 16593.1i 0.965590 + 0.623894i
\(892\) 0 0
\(893\) 12399.9i 0.464665i
\(894\) 0 0
\(895\) 54620.4i 2.03995i
\(896\) 0 0
\(897\) −13826.4 + 3519.96i −0.514660 + 0.131023i
\(898\) 0 0
\(899\) −16465.7 −0.610859
\(900\) 0 0
\(901\) 105.505i 0.00390109i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 71470.9i 2.62516i
\(906\) 0 0
\(907\) −38199.7 −1.39846 −0.699229 0.714898i \(-0.746473\pi\)
−0.699229 + 0.714898i \(0.746473\pi\)
\(908\) 0 0
\(909\) 363.776 198.059i 0.0132736 0.00722684i
\(910\) 0 0
\(911\) 41209.5i 1.49872i 0.662165 + 0.749358i \(0.269638\pi\)
−0.662165 + 0.749358i \(0.730362\pi\)
\(912\) 0 0
\(913\) 14968.0i 0.542573i
\(914\) 0 0
\(915\) −14297.0 56158.4i −0.516549 2.02900i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 35851.3 1.28686 0.643431 0.765504i \(-0.277511\pi\)
0.643431 + 0.765504i \(0.277511\pi\)
\(920\) 0 0
\(921\) 4799.44 + 18852.2i 0.171712 + 0.674485i
\(922\) 0 0
\(923\) −37803.5 −1.34812
\(924\) 0 0
\(925\) 17369.5 0.617411
\(926\) 0 0
\(927\) 4559.38 + 8374.24i 0.161542 + 0.296706i
\(928\) 0 0
\(929\) −39315.6 −1.38849 −0.694243 0.719741i \(-0.744260\pi\)
−0.694243 + 0.719741i \(0.744260\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −52384.7 + 13336.2i −1.83815 + 0.467962i
\(934\) 0 0
\(935\) 4850.61i 0.169660i
\(936\) 0 0
\(937\) 25396.6i 0.885455i 0.896656 + 0.442728i \(0.145989\pi\)
−0.896656 + 0.442728i \(0.854011\pi\)
\(938\) 0 0
\(939\) 4218.97 + 16572.1i 0.146625 + 0.575942i
\(940\) 0 0
\(941\) 18176.1 0.629676 0.314838 0.949145i \(-0.398050\pi\)
0.314838 + 0.949145i \(0.398050\pi\)
\(942\) 0 0
\(943\) 4724.01i 0.163134i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 42110.2i 1.44498i −0.691380 0.722491i \(-0.742997\pi\)
0.691380 0.722491i \(-0.257003\pi\)
\(948\) 0 0
\(949\) 30004.8 1.02634
\(950\) 0 0
\(951\) 7664.57 + 30106.4i 0.261347 + 1.02657i
\(952\) 0 0
\(953\) 18521.2i 0.629551i −0.949166 0.314775i \(-0.898071\pi\)
0.949166 0.314775i \(-0.101929\pi\)
\(954\) 0 0
\(955\) 87377.4i 2.96070i
\(956\) 0 0
\(957\) 48263.7 12287.1i 1.63024 0.415032i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 24599.5 0.825736
\(962\) 0 0
\(963\) 665.147 + 1221.68i 0.0222576 + 0.0408807i
\(964\) 0 0
\(965\) 42853.9 1.42955
\(966\) 0 0
\(967\) 48504.3 1.61302 0.806512 0.591218i \(-0.201353\pi\)
0.806512 + 0.591218i \(0.201353\pi\)
\(968\) 0 0
\(969\) 521.542 + 2048.62i 0.0172903 + 0.0679164i
\(970\) 0 0
\(971\) −33158.4 −1.09589 −0.547943 0.836516i \(-0.684589\pi\)
−0.547943 + 0.836516i \(0.684589\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −24785.5 97357.4i −0.814125 3.19788i
\(976\) 0 0
\(977\) 34135.5i 1.11780i −0.829234 0.558901i \(-0.811223\pi\)
0.829234 0.558901i \(-0.188777\pi\)
\(978\) 0 0
\(979\) 59688.8i 1.94858i
\(980\) 0 0
\(981\) −15902.7 + 8658.27i −0.517568 + 0.281791i
\(982\) 0 0
\(983\) −339.463 −0.0110144 −0.00550721 0.999985i \(-0.501753\pi\)
−0.00550721 + 0.999985i \(0.501753\pi\)
\(984\) 0 0
\(985\) 80945.2i 2.61841i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 13031.3i 0.418981i
\(990\) 0 0
\(991\) −559.940 −0.0179486 −0.00897431 0.999960i \(-0.502857\pi\)
−0.00897431 + 0.999960i \(0.502857\pi\)
\(992\) 0 0
\(993\) −210.655 + 53.6292i −0.00673207 + 0.00171387i
\(994\) 0 0
\(995\) 85556.5i 2.72595i
\(996\) 0 0
\(997\) 12840.4i 0.407884i −0.978983 0.203942i \(-0.934625\pi\)
0.978983 0.203942i \(-0.0653754\pi\)
\(998\) 0 0
\(999\) −7132.06 + 6615.76i −0.225874 + 0.209523i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.4.f.c.293.2 12
3.2 odd 2 inner 588.4.f.c.293.12 12
7.2 even 3 588.4.k.c.521.5 12
7.3 odd 6 588.4.k.c.509.2 12
7.4 even 3 84.4.k.c.5.5 yes 12
7.5 odd 6 84.4.k.c.17.2 yes 12
7.6 odd 2 inner 588.4.f.c.293.11 12
21.2 odd 6 588.4.k.c.521.2 12
21.5 even 6 84.4.k.c.17.5 yes 12
21.11 odd 6 84.4.k.c.5.2 12
21.17 even 6 588.4.k.c.509.5 12
21.20 even 2 inner 588.4.f.c.293.1 12
28.11 odd 6 336.4.bc.c.257.2 12
28.19 even 6 336.4.bc.c.17.5 12
84.11 even 6 336.4.bc.c.257.5 12
84.47 odd 6 336.4.bc.c.17.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.4.k.c.5.2 12 21.11 odd 6
84.4.k.c.5.5 yes 12 7.4 even 3
84.4.k.c.17.2 yes 12 7.5 odd 6
84.4.k.c.17.5 yes 12 21.5 even 6
336.4.bc.c.17.2 12 84.47 odd 6
336.4.bc.c.17.5 12 28.19 even 6
336.4.bc.c.257.2 12 28.11 odd 6
336.4.bc.c.257.5 12 84.11 even 6
588.4.f.c.293.1 12 21.20 even 2 inner
588.4.f.c.293.2 12 1.1 even 1 trivial
588.4.f.c.293.11 12 7.6 odd 2 inner
588.4.f.c.293.12 12 3.2 odd 2 inner
588.4.k.c.509.2 12 7.3 odd 6
588.4.k.c.509.5 12 21.17 even 6
588.4.k.c.521.2 12 21.2 odd 6
588.4.k.c.521.5 12 7.2 even 3