Properties

Label 588.4.f.c.293.11
Level $588$
Weight $4$
Character 588.293
Analytic conductor $34.693$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,4,Mod(293,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.293");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.6931230834\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 14 x^{10} - 32 x^{9} + 70 x^{8} + 224 x^{7} - 50 x^{6} + 2016 x^{5} + 5670 x^{4} + \cdots + 531441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{7} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 293.11
Root \(2.88784 + 0.812653i\) of defining polynomial
Character \(\chi\) \(=\) 588.293
Dual form 588.4.f.c.293.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.03553 - 1.28196i) q^{3} +19.3778 q^{5} +(23.7132 - 12.9107i) q^{9} +41.9412i q^{11} -77.1820i q^{13} +(97.5776 - 24.8416i) q^{15} +5.96831 q^{17} -68.1654i q^{19} -35.5752i q^{23} +250.500 q^{25} +(102.857 - 95.4115i) q^{27} +228.525i q^{29} -72.0520i q^{31} +(53.7668 + 211.196i) q^{33} +69.3392 q^{37} +(-98.9442 - 388.652i) q^{39} +132.789 q^{41} -366.304 q^{43} +(459.509 - 250.181i) q^{45} +181.908 q^{47} +(30.0536 - 7.65113i) q^{51} +17.6775i q^{53} +812.728i q^{55} +(-87.3853 - 343.249i) q^{57} -494.370 q^{59} +575.525i q^{61} -1495.62i q^{65} -404.323 q^{67} +(-45.6060 - 179.140i) q^{69} +489.797i q^{71} +388.753i q^{73} +(1261.40 - 321.131i) q^{75} +253.411 q^{79} +(395.628 - 612.307i) q^{81} -356.881 q^{83} +115.653 q^{85} +(292.960 + 1150.75i) q^{87} +1423.16 q^{89} +(-92.3677 - 362.820i) q^{93} -1320.90i q^{95} -694.168i q^{97} +(541.489 + 994.557i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 168 q^{9} + 132 q^{15} + 888 q^{25} - 480 q^{37} + 864 q^{39} + 600 q^{51} + 180 q^{57} - 3960 q^{67} + 876 q^{79} - 2016 q^{81} - 6144 q^{85} - 1764 q^{93} + 9216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.03553 1.28196i 0.969089 0.246713i
\(4\) 0 0
\(5\) 19.3778 1.73320 0.866602 0.498999i \(-0.166299\pi\)
0.866602 + 0.498999i \(0.166299\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 23.7132 12.9107i 0.878265 0.478174i
\(10\) 0 0
\(11\) 41.9412i 1.14961i 0.818290 + 0.574806i \(0.194923\pi\)
−0.818290 + 0.574806i \(0.805077\pi\)
\(12\) 0 0
\(13\) 77.1820i 1.64665i −0.567571 0.823325i \(-0.692117\pi\)
0.567571 0.823325i \(-0.307883\pi\)
\(14\) 0 0
\(15\) 97.5776 24.8416i 1.67963 0.427604i
\(16\) 0 0
\(17\) 5.96831 0.0851487 0.0425743 0.999093i \(-0.486444\pi\)
0.0425743 + 0.999093i \(0.486444\pi\)
\(18\) 0 0
\(19\) 68.1654i 0.823064i −0.911395 0.411532i \(-0.864994\pi\)
0.911395 0.411532i \(-0.135006\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 35.5752i 0.322519i −0.986912 0.161260i \(-0.948444\pi\)
0.986912 0.161260i \(-0.0515557\pi\)
\(24\) 0 0
\(25\) 250.500 2.00400
\(26\) 0 0
\(27\) 102.857 95.4115i 0.733145 0.680072i
\(28\) 0 0
\(29\) 228.525i 1.46331i 0.681673 + 0.731657i \(0.261253\pi\)
−0.681673 + 0.731657i \(0.738747\pi\)
\(30\) 0 0
\(31\) 72.0520i 0.417449i −0.977974 0.208725i \(-0.933069\pi\)
0.977974 0.208725i \(-0.0669312\pi\)
\(32\) 0 0
\(33\) 53.7668 + 211.196i 0.283624 + 1.11408i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 69.3392 0.308089 0.154045 0.988064i \(-0.450770\pi\)
0.154045 + 0.988064i \(0.450770\pi\)
\(38\) 0 0
\(39\) −98.9442 388.652i −0.406250 1.59575i
\(40\) 0 0
\(41\) 132.789 0.505810 0.252905 0.967491i \(-0.418614\pi\)
0.252905 + 0.967491i \(0.418614\pi\)
\(42\) 0 0
\(43\) −366.304 −1.29909 −0.649544 0.760324i \(-0.725040\pi\)
−0.649544 + 0.760324i \(0.725040\pi\)
\(44\) 0 0
\(45\) 459.509 250.181i 1.52221 0.828773i
\(46\) 0 0
\(47\) 181.908 0.564555 0.282277 0.959333i \(-0.408910\pi\)
0.282277 + 0.959333i \(0.408910\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 30.0536 7.65113i 0.0825166 0.0210073i
\(52\) 0 0
\(53\) 17.6775i 0.0458150i 0.999738 + 0.0229075i \(0.00729232\pi\)
−0.999738 + 0.0229075i \(0.992708\pi\)
\(54\) 0 0
\(55\) 812.728i 1.99251i
\(56\) 0 0
\(57\) −87.3853 343.249i −0.203061 0.797622i
\(58\) 0 0
\(59\) −494.370 −1.09087 −0.545437 0.838152i \(-0.683636\pi\)
−0.545437 + 0.838152i \(0.683636\pi\)
\(60\) 0 0
\(61\) 575.525i 1.20801i 0.796981 + 0.604004i \(0.206429\pi\)
−0.796981 + 0.604004i \(0.793571\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1495.62i 2.85398i
\(66\) 0 0
\(67\) −404.323 −0.737253 −0.368627 0.929578i \(-0.620172\pi\)
−0.368627 + 0.929578i \(0.620172\pi\)
\(68\) 0 0
\(69\) −45.6060 179.140i −0.0795697 0.312550i
\(70\) 0 0
\(71\) 489.797i 0.818707i 0.912376 + 0.409353i \(0.134246\pi\)
−0.912376 + 0.409353i \(0.865754\pi\)
\(72\) 0 0
\(73\) 388.753i 0.623290i 0.950199 + 0.311645i \(0.100880\pi\)
−0.950199 + 0.311645i \(0.899120\pi\)
\(74\) 0 0
\(75\) 1261.40 321.131i 1.94205 0.494413i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 253.411 0.360899 0.180449 0.983584i \(-0.442245\pi\)
0.180449 + 0.983584i \(0.442245\pi\)
\(80\) 0 0
\(81\) 395.628 612.307i 0.542700 0.839927i
\(82\) 0 0
\(83\) −356.881 −0.471961 −0.235981 0.971758i \(-0.575830\pi\)
−0.235981 + 0.971758i \(0.575830\pi\)
\(84\) 0 0
\(85\) 115.653 0.147580
\(86\) 0 0
\(87\) 292.960 + 1150.75i 0.361019 + 1.41808i
\(88\) 0 0
\(89\) 1423.16 1.69499 0.847496 0.530802i \(-0.178109\pi\)
0.847496 + 0.530802i \(0.178109\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −92.3677 362.820i −0.102990 0.404545i
\(94\) 0 0
\(95\) 1320.90i 1.42654i
\(96\) 0 0
\(97\) 694.168i 0.726619i −0.931668 0.363310i \(-0.881647\pi\)
0.931668 0.363310i \(-0.118353\pi\)
\(98\) 0 0
\(99\) 541.489 + 994.557i 0.549714 + 1.00966i
\(100\) 0 0
\(101\) −15.3407 −0.0151134 −0.00755671 0.999971i \(-0.502405\pi\)
−0.00755671 + 0.999971i \(0.502405\pi\)
\(102\) 0 0
\(103\) 353.147i 0.337831i −0.985630 0.168916i \(-0.945973\pi\)
0.985630 0.168916i \(-0.0540266\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 51.5191i 0.0465471i 0.999729 + 0.0232736i \(0.00740887\pi\)
−0.999729 + 0.0232736i \(0.992591\pi\)
\(108\) 0 0
\(109\) −670.628 −0.589308 −0.294654 0.955604i \(-0.595204\pi\)
−0.294654 + 0.955604i \(0.595204\pi\)
\(110\) 0 0
\(111\) 349.160 88.8901i 0.298566 0.0760097i
\(112\) 0 0
\(113\) 461.944i 0.384567i 0.981339 + 0.192283i \(0.0615893\pi\)
−0.981339 + 0.192283i \(0.938411\pi\)
\(114\) 0 0
\(115\) 689.370i 0.558992i
\(116\) 0 0
\(117\) −996.473 1830.23i −0.787384 1.44619i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −428.061 −0.321608
\(122\) 0 0
\(123\) 668.665 170.231i 0.490175 0.124790i
\(124\) 0 0
\(125\) 2431.91 1.74014
\(126\) 0 0
\(127\) −388.699 −0.271587 −0.135793 0.990737i \(-0.543358\pi\)
−0.135793 + 0.990737i \(0.543358\pi\)
\(128\) 0 0
\(129\) −1844.53 + 469.586i −1.25893 + 0.320502i
\(130\) 0 0
\(131\) 627.675 0.418628 0.209314 0.977849i \(-0.432877\pi\)
0.209314 + 0.977849i \(0.432877\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1993.15 1848.87i 1.27069 1.17870i
\(136\) 0 0
\(137\) 2104.21i 1.31222i −0.754664 0.656111i \(-0.772200\pi\)
0.754664 0.656111i \(-0.227800\pi\)
\(138\) 0 0
\(139\) 1030.03i 0.628533i 0.949335 + 0.314266i \(0.101759\pi\)
−0.949335 + 0.314266i \(0.898241\pi\)
\(140\) 0 0
\(141\) 916.005 233.199i 0.547103 0.139283i
\(142\) 0 0
\(143\) 3237.10 1.89301
\(144\) 0 0
\(145\) 4428.32i 2.53622i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 201.165i 0.110605i −0.998470 0.0553024i \(-0.982388\pi\)
0.998470 0.0553024i \(-0.0176123\pi\)
\(150\) 0 0
\(151\) 1192.48 0.642664 0.321332 0.946967i \(-0.395869\pi\)
0.321332 + 0.946967i \(0.395869\pi\)
\(152\) 0 0
\(153\) 141.527 77.0550i 0.0747831 0.0407158i
\(154\) 0 0
\(155\) 1396.21i 0.723525i
\(156\) 0 0
\(157\) 1092.22i 0.555215i −0.960695 0.277608i \(-0.910459\pi\)
0.960695 0.277608i \(-0.0895415\pi\)
\(158\) 0 0
\(159\) 22.6619 + 89.0158i 0.0113032 + 0.0443988i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −579.604 −0.278516 −0.139258 0.990256i \(-0.544472\pi\)
−0.139258 + 0.990256i \(0.544472\pi\)
\(164\) 0 0
\(165\) 1041.88 + 4092.52i 0.491579 + 1.93092i
\(166\) 0 0
\(167\) −3715.71 −1.72174 −0.860869 0.508827i \(-0.830079\pi\)
−0.860869 + 0.508827i \(0.830079\pi\)
\(168\) 0 0
\(169\) −3760.06 −1.71145
\(170\) 0 0
\(171\) −880.063 1616.42i −0.393568 0.722869i
\(172\) 0 0
\(173\) 1338.41 0.588193 0.294096 0.955776i \(-0.404981\pi\)
0.294096 + 0.955776i \(0.404981\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2489.42 + 633.763i −1.05715 + 0.269133i
\(178\) 0 0
\(179\) 2818.71i 1.17698i 0.808503 + 0.588492i \(0.200278\pi\)
−0.808503 + 0.588492i \(0.799722\pi\)
\(180\) 0 0
\(181\) 3688.28i 1.51463i 0.653050 + 0.757315i \(0.273489\pi\)
−0.653050 + 0.757315i \(0.726511\pi\)
\(182\) 0 0
\(183\) 737.800 + 2898.08i 0.298031 + 1.17067i
\(184\) 0 0
\(185\) 1343.64 0.533982
\(186\) 0 0
\(187\) 250.318i 0.0978879i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4509.14i 1.70822i 0.520092 + 0.854111i \(0.325898\pi\)
−0.520092 + 0.854111i \(0.674102\pi\)
\(192\) 0 0
\(193\) −2211.49 −0.824802 −0.412401 0.911002i \(-0.635310\pi\)
−0.412401 + 0.911002i \(0.635310\pi\)
\(194\) 0 0
\(195\) −1917.32 7531.24i −0.704114 2.76576i
\(196\) 0 0
\(197\) 4177.21i 1.51073i −0.655304 0.755365i \(-0.727460\pi\)
0.655304 0.755365i \(-0.272540\pi\)
\(198\) 0 0
\(199\) 4415.17i 1.57278i −0.617730 0.786391i \(-0.711947\pi\)
0.617730 0.786391i \(-0.288053\pi\)
\(200\) 0 0
\(201\) −2035.98 + 518.326i −0.714463 + 0.181890i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2573.17 0.876673
\(206\) 0 0
\(207\) −459.300 843.601i −0.154220 0.283257i
\(208\) 0 0
\(209\) 2858.94 0.946205
\(210\) 0 0
\(211\) −2002.19 −0.653252 −0.326626 0.945154i \(-0.605912\pi\)
−0.326626 + 0.945154i \(0.605912\pi\)
\(212\) 0 0
\(213\) 627.899 + 2466.39i 0.201986 + 0.793399i
\(214\) 0 0
\(215\) −7098.17 −2.25159
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 498.366 + 1957.58i 0.153774 + 0.604023i
\(220\) 0 0
\(221\) 460.646i 0.140210i
\(222\) 0 0
\(223\) 2122.04i 0.637230i 0.947884 + 0.318615i \(0.103218\pi\)
−0.947884 + 0.318615i \(0.896782\pi\)
\(224\) 0 0
\(225\) 5940.14 3234.13i 1.76004 0.958260i
\(226\) 0 0
\(227\) −4862.82 −1.42184 −0.710918 0.703274i \(-0.751720\pi\)
−0.710918 + 0.703274i \(0.751720\pi\)
\(228\) 0 0
\(229\) 5662.03i 1.63387i −0.576726 0.816937i \(-0.695670\pi\)
0.576726 0.816937i \(-0.304330\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3253.73i 0.914846i −0.889249 0.457423i \(-0.848772\pi\)
0.889249 0.457423i \(-0.151228\pi\)
\(234\) 0 0
\(235\) 3524.99 0.978489
\(236\) 0 0
\(237\) 1276.06 324.863i 0.349743 0.0890385i
\(238\) 0 0
\(239\) 5823.69i 1.57616i 0.615571 + 0.788082i \(0.288926\pi\)
−0.615571 + 0.788082i \(0.711074\pi\)
\(240\) 0 0
\(241\) 6176.56i 1.65090i 0.564474 + 0.825451i \(0.309079\pi\)
−0.564474 + 0.825451i \(0.690921\pi\)
\(242\) 0 0
\(243\) 1207.25 3590.47i 0.318703 0.947855i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5261.14 −1.35530
\(248\) 0 0
\(249\) −1797.09 + 457.507i −0.457372 + 0.116439i
\(250\) 0 0
\(251\) 1648.38 0.414522 0.207261 0.978286i \(-0.433545\pi\)
0.207261 + 0.978286i \(0.433545\pi\)
\(252\) 0 0
\(253\) 1492.07 0.370772
\(254\) 0 0
\(255\) 582.373 148.262i 0.143018 0.0364099i
\(256\) 0 0
\(257\) −3204.54 −0.777797 −0.388899 0.921281i \(-0.627144\pi\)
−0.388899 + 0.921281i \(0.627144\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2950.42 + 5419.06i 0.699718 + 1.28518i
\(262\) 0 0
\(263\) 3459.42i 0.811092i 0.914075 + 0.405546i \(0.132919\pi\)
−0.914075 + 0.405546i \(0.867081\pi\)
\(264\) 0 0
\(265\) 342.552i 0.0794068i
\(266\) 0 0
\(267\) 7166.35 1824.43i 1.64260 0.418177i
\(268\) 0 0
\(269\) −1330.60 −0.301591 −0.150795 0.988565i \(-0.548183\pi\)
−0.150795 + 0.988565i \(0.548183\pi\)
\(270\) 0 0
\(271\) 3342.15i 0.749157i 0.927195 + 0.374578i \(0.122212\pi\)
−0.927195 + 0.374578i \(0.877788\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10506.3i 2.30382i
\(276\) 0 0
\(277\) −4801.14 −1.04142 −0.520709 0.853734i \(-0.674332\pi\)
−0.520709 + 0.853734i \(0.674332\pi\)
\(278\) 0 0
\(279\) −930.241 1708.58i −0.199613 0.366631i
\(280\) 0 0
\(281\) 4548.87i 0.965704i −0.875702 0.482852i \(-0.839601\pi\)
0.875702 0.482852i \(-0.160399\pi\)
\(282\) 0 0
\(283\) 4529.79i 0.951477i 0.879587 + 0.475739i \(0.157819\pi\)
−0.879587 + 0.475739i \(0.842181\pi\)
\(284\) 0 0
\(285\) −1693.34 6651.42i −0.351946 1.38244i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4877.38 −0.992750
\(290\) 0 0
\(291\) −889.895 3495.50i −0.179266 0.704158i
\(292\) 0 0
\(293\) −9525.19 −1.89921 −0.949603 0.313454i \(-0.898514\pi\)
−0.949603 + 0.313454i \(0.898514\pi\)
\(294\) 0 0
\(295\) −9579.82 −1.89071
\(296\) 0 0
\(297\) 4001.67 + 4313.96i 0.781819 + 0.842833i
\(298\) 0 0
\(299\) −2745.77 −0.531076
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −77.2485 + 19.6661i −0.0146462 + 0.00372868i
\(304\) 0 0
\(305\) 11152.4i 2.09372i
\(306\) 0 0
\(307\) 3743.83i 0.696000i 0.937495 + 0.348000i \(0.113139\pi\)
−0.937495 + 0.348000i \(0.886861\pi\)
\(308\) 0 0
\(309\) −452.720 1778.28i −0.0833475 0.327389i
\(310\) 0 0
\(311\) −10403.0 −1.89679 −0.948393 0.317098i \(-0.897292\pi\)
−0.948393 + 0.317098i \(0.897292\pi\)
\(312\) 0 0
\(313\) 3291.03i 0.594313i 0.954829 + 0.297157i \(0.0960384\pi\)
−0.954829 + 0.297157i \(0.903962\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5978.80i 1.05931i −0.848212 0.529657i \(-0.822321\pi\)
0.848212 0.529657i \(-0.177679\pi\)
\(318\) 0 0
\(319\) −9584.62 −1.68224
\(320\) 0 0
\(321\) 66.0454 + 259.426i 0.0114838 + 0.0451083i
\(322\) 0 0
\(323\) 406.832i 0.0700828i
\(324\) 0 0
\(325\) 19334.1i 3.29988i
\(326\) 0 0
\(327\) −3376.97 + 859.718i −0.571091 + 0.145390i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 41.8338 0.00694680 0.00347340 0.999994i \(-0.498894\pi\)
0.00347340 + 0.999994i \(0.498894\pi\)
\(332\) 0 0
\(333\) 1644.25 895.218i 0.270584 0.147320i
\(334\) 0 0
\(335\) −7834.90 −1.27781
\(336\) 0 0
\(337\) −5477.82 −0.885447 −0.442723 0.896658i \(-0.645988\pi\)
−0.442723 + 0.896658i \(0.645988\pi\)
\(338\) 0 0
\(339\) 592.194 + 2326.13i 0.0948777 + 0.372679i
\(340\) 0 0
\(341\) 3021.95 0.479905
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −883.744 3471.34i −0.137911 0.541713i
\(346\) 0 0
\(347\) 1106.21i 0.171136i −0.996332 0.0855681i \(-0.972729\pi\)
0.996332 0.0855681i \(-0.0272705\pi\)
\(348\) 0 0
\(349\) 7172.24i 1.10006i 0.835145 + 0.550030i \(0.185384\pi\)
−0.835145 + 0.550030i \(0.814616\pi\)
\(350\) 0 0
\(351\) −7364.05 7938.74i −1.11984 1.20723i
\(352\) 0 0
\(353\) 7373.73 1.11180 0.555898 0.831251i \(-0.312375\pi\)
0.555898 + 0.831251i \(0.312375\pi\)
\(354\) 0 0
\(355\) 9491.19i 1.41899i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 955.590i 0.140485i 0.997530 + 0.0702425i \(0.0223773\pi\)
−0.997530 + 0.0702425i \(0.977623\pi\)
\(360\) 0 0
\(361\) 2212.48 0.322566
\(362\) 0 0
\(363\) −2155.51 + 548.756i −0.311667 + 0.0793450i
\(364\) 0 0
\(365\) 7533.19i 1.08029i
\(366\) 0 0
\(367\) 5699.26i 0.810624i 0.914178 + 0.405312i \(0.132837\pi\)
−0.914178 + 0.405312i \(0.867163\pi\)
\(368\) 0 0
\(369\) 3148.86 1714.40i 0.444235 0.241865i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 9914.06 1.37622 0.688111 0.725606i \(-0.258440\pi\)
0.688111 + 0.725606i \(0.258440\pi\)
\(374\) 0 0
\(375\) 12246.0 3117.61i 1.68635 0.429314i
\(376\) 0 0
\(377\) 17638.1 2.40956
\(378\) 0 0
\(379\) 8051.92 1.09129 0.545646 0.838016i \(-0.316284\pi\)
0.545646 + 0.838016i \(0.316284\pi\)
\(380\) 0 0
\(381\) −1957.31 + 498.297i −0.263191 + 0.0670040i
\(382\) 0 0
\(383\) −4368.43 −0.582810 −0.291405 0.956600i \(-0.594123\pi\)
−0.291405 + 0.956600i \(0.594123\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8686.22 + 4729.23i −1.14094 + 0.621190i
\(388\) 0 0
\(389\) 2451.96i 0.319586i 0.987151 + 0.159793i \(0.0510828\pi\)
−0.987151 + 0.159793i \(0.948917\pi\)
\(390\) 0 0
\(391\) 212.324i 0.0274621i
\(392\) 0 0
\(393\) 3160.68 804.654i 0.405687 0.103281i
\(394\) 0 0
\(395\) 4910.56 0.625511
\(396\) 0 0
\(397\) 8408.87i 1.06305i 0.847044 + 0.531523i \(0.178380\pi\)
−0.847044 + 0.531523i \(0.821620\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8037.63i 1.00095i 0.865751 + 0.500474i \(0.166841\pi\)
−0.865751 + 0.500474i \(0.833159\pi\)
\(402\) 0 0
\(403\) −5561.12 −0.687392
\(404\) 0 0
\(405\) 7666.41 11865.2i 0.940610 1.45577i
\(406\) 0 0
\(407\) 2908.17i 0.354183i
\(408\) 0 0
\(409\) 4916.56i 0.594396i −0.954816 0.297198i \(-0.903948\pi\)
0.954816 0.297198i \(-0.0960522\pi\)
\(410\) 0 0
\(411\) −2697.51 10595.8i −0.323743 1.27166i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −6915.58 −0.818006
\(416\) 0 0
\(417\) 1320.46 + 5186.75i 0.155067 + 0.609104i
\(418\) 0 0
\(419\) −4713.84 −0.549608 −0.274804 0.961500i \(-0.588613\pi\)
−0.274804 + 0.961500i \(0.588613\pi\)
\(420\) 0 0
\(421\) 9921.92 1.14861 0.574305 0.818641i \(-0.305272\pi\)
0.574305 + 0.818641i \(0.305272\pi\)
\(422\) 0 0
\(423\) 4313.62 2348.56i 0.495829 0.269955i
\(424\) 0 0
\(425\) 1495.06 0.170638
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 16300.5 4149.83i 1.83449 0.467030i
\(430\) 0 0
\(431\) 12587.4i 1.40676i −0.710814 0.703380i \(-0.751673\pi\)
0.710814 0.703380i \(-0.248327\pi\)
\(432\) 0 0
\(433\) 3715.19i 0.412334i −0.978517 0.206167i \(-0.933901\pi\)
0.978517 0.206167i \(-0.0660989\pi\)
\(434\) 0 0
\(435\) 5676.93 + 22299.0i 0.625719 + 2.45782i
\(436\) 0 0
\(437\) −2425.00 −0.265454
\(438\) 0 0
\(439\) 5865.27i 0.637663i −0.947811 0.318831i \(-0.896710\pi\)
0.947811 0.318831i \(-0.103290\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15440.8i 1.65601i −0.560720 0.828005i \(-0.689476\pi\)
0.560720 0.828005i \(-0.310524\pi\)
\(444\) 0 0
\(445\) 27577.7 2.93777
\(446\) 0 0
\(447\) −257.886 1012.98i −0.0272877 0.107186i
\(448\) 0 0
\(449\) 16373.4i 1.72095i −0.509491 0.860476i \(-0.670166\pi\)
0.509491 0.860476i \(-0.329834\pi\)
\(450\) 0 0
\(451\) 5569.34i 0.581486i
\(452\) 0 0
\(453\) 6004.75 1528.70i 0.622798 0.158554i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2754.42 0.281940 0.140970 0.990014i \(-0.454978\pi\)
0.140970 + 0.990014i \(0.454978\pi\)
\(458\) 0 0
\(459\) 613.885 569.445i 0.0624263 0.0579072i
\(460\) 0 0
\(461\) 15142.3 1.52982 0.764909 0.644139i \(-0.222784\pi\)
0.764909 + 0.644139i \(0.222784\pi\)
\(462\) 0 0
\(463\) −10138.9 −1.01770 −0.508851 0.860855i \(-0.669930\pi\)
−0.508851 + 0.860855i \(0.669930\pi\)
\(464\) 0 0
\(465\) −1789.89 7030.67i −0.178503 0.701160i
\(466\) 0 0
\(467\) 16149.3 1.60021 0.800106 0.599858i \(-0.204776\pi\)
0.800106 + 0.599858i \(0.204776\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1400.18 5499.92i −0.136979 0.538053i
\(472\) 0 0
\(473\) 15363.2i 1.49345i
\(474\) 0 0
\(475\) 17075.4i 1.64942i
\(476\) 0 0
\(477\) 228.229 + 419.190i 0.0219075 + 0.0402377i
\(478\) 0 0
\(479\) 8419.81 0.803154 0.401577 0.915825i \(-0.368462\pi\)
0.401577 + 0.915825i \(0.368462\pi\)
\(480\) 0 0
\(481\) 5351.74i 0.507315i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13451.5i 1.25938i
\(486\) 0 0
\(487\) −14078.2 −1.30995 −0.654975 0.755651i \(-0.727321\pi\)
−0.654975 + 0.755651i \(0.727321\pi\)
\(488\) 0 0
\(489\) −2918.61 + 743.029i −0.269907 + 0.0687135i
\(490\) 0 0
\(491\) 17853.2i 1.64094i 0.571688 + 0.820471i \(0.306289\pi\)
−0.571688 + 0.820471i \(0.693711\pi\)
\(492\) 0 0
\(493\) 1363.91i 0.124599i
\(494\) 0 0
\(495\) 10492.9 + 19272.4i 0.952768 + 1.74996i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13605.8 1.22060 0.610298 0.792172i \(-0.291050\pi\)
0.610298 + 0.792172i \(0.291050\pi\)
\(500\) 0 0
\(501\) −18710.6 + 4763.38i −1.66852 + 0.424775i
\(502\) 0 0
\(503\) −7503.79 −0.665164 −0.332582 0.943074i \(-0.607920\pi\)
−0.332582 + 0.943074i \(0.607920\pi\)
\(504\) 0 0
\(505\) −297.269 −0.0261946
\(506\) 0 0
\(507\) −18933.9 + 4820.25i −1.65855 + 0.422238i
\(508\) 0 0
\(509\) 10479.2 0.912541 0.456270 0.889841i \(-0.349185\pi\)
0.456270 + 0.889841i \(0.349185\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −6503.76 7011.32i −0.559743 0.603425i
\(514\) 0 0
\(515\) 6843.22i 0.585531i
\(516\) 0 0
\(517\) 7629.45i 0.649019i
\(518\) 0 0
\(519\) 6739.60 1715.79i 0.570011 0.145115i
\(520\) 0 0
\(521\) 7295.75 0.613498 0.306749 0.951790i \(-0.400759\pi\)
0.306749 + 0.951790i \(0.400759\pi\)
\(522\) 0 0
\(523\) 15195.0i 1.27043i −0.772337 0.635213i \(-0.780912\pi\)
0.772337 0.635213i \(-0.219088\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 430.029i 0.0355452i
\(528\) 0 0
\(529\) 10901.4 0.895981
\(530\) 0 0
\(531\) −11723.1 + 6382.66i −0.958076 + 0.521627i
\(532\) 0 0
\(533\) 10249.0i 0.832892i
\(534\) 0 0
\(535\) 998.328i 0.0806757i
\(536\) 0 0
\(537\) 3613.47 + 14193.7i 0.290377 + 1.14060i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −18373.2 −1.46012 −0.730061 0.683382i \(-0.760508\pi\)
−0.730061 + 0.683382i \(0.760508\pi\)
\(542\) 0 0
\(543\) 4728.23 + 18572.5i 0.373679 + 1.46781i
\(544\) 0 0
\(545\) −12995.3 −1.02139
\(546\) 0 0
\(547\) −20764.3 −1.62307 −0.811534 0.584305i \(-0.801367\pi\)
−0.811534 + 0.584305i \(0.801367\pi\)
\(548\) 0 0
\(549\) 7430.43 + 13647.5i 0.577637 + 1.06095i
\(550\) 0 0
\(551\) 15577.5 1.20440
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 6765.96 1722.50i 0.517476 0.131740i
\(556\) 0 0
\(557\) 5210.25i 0.396347i −0.980167 0.198174i \(-0.936499\pi\)
0.980167 0.198174i \(-0.0635010\pi\)
\(558\) 0 0
\(559\) 28272.1i 2.13914i
\(560\) 0 0
\(561\) 320.897 + 1260.48i 0.0241502 + 0.0948621i
\(562\) 0 0
\(563\) 10188.7 0.762703 0.381351 0.924430i \(-0.375459\pi\)
0.381351 + 0.924430i \(0.375459\pi\)
\(564\) 0 0
\(565\) 8951.47i 0.666533i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1867.77i 0.137612i 0.997630 + 0.0688059i \(0.0219189\pi\)
−0.997630 + 0.0688059i \(0.978081\pi\)
\(570\) 0 0
\(571\) −908.844 −0.0666094 −0.0333047 0.999445i \(-0.510603\pi\)
−0.0333047 + 0.999445i \(0.510603\pi\)
\(572\) 0 0
\(573\) 5780.54 + 22705.9i 0.421441 + 1.65542i
\(574\) 0 0
\(575\) 8911.59i 0.646328i
\(576\) 0 0
\(577\) 15044.2i 1.08544i 0.839914 + 0.542720i \(0.182605\pi\)
−0.839914 + 0.542720i \(0.817395\pi\)
\(578\) 0 0
\(579\) −11136.1 + 2835.05i −0.799307 + 0.203490i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −741.416 −0.0526695
\(584\) 0 0
\(585\) −19309.5 35465.9i −1.36470 2.50655i
\(586\) 0 0
\(587\) 22979.9 1.61581 0.807906 0.589312i \(-0.200601\pi\)
0.807906 + 0.589312i \(0.200601\pi\)
\(588\) 0 0
\(589\) −4911.46 −0.343587
\(590\) 0 0
\(591\) −5355.01 21034.5i −0.372717 1.46403i
\(592\) 0 0
\(593\) 4220.66 0.292279 0.146140 0.989264i \(-0.453315\pi\)
0.146140 + 0.989264i \(0.453315\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5660.07 22232.8i −0.388026 1.52416i
\(598\) 0 0
\(599\) 22561.2i 1.53894i −0.638682 0.769471i \(-0.720520\pi\)
0.638682 0.769471i \(-0.279480\pi\)
\(600\) 0 0
\(601\) 2004.06i 0.136019i −0.997685 0.0680095i \(-0.978335\pi\)
0.997685 0.0680095i \(-0.0216648\pi\)
\(602\) 0 0
\(603\) −9587.78 + 5220.09i −0.647504 + 0.352535i
\(604\) 0 0
\(605\) −8294.88 −0.557413
\(606\) 0 0
\(607\) 9819.23i 0.656590i 0.944575 + 0.328295i \(0.106474\pi\)
−0.944575 + 0.328295i \(0.893526\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14040.1i 0.929623i
\(612\) 0 0
\(613\) −18993.4 −1.25145 −0.625724 0.780044i \(-0.715196\pi\)
−0.625724 + 0.780044i \(0.715196\pi\)
\(614\) 0 0
\(615\) 12957.3 3298.70i 0.849573 0.216287i
\(616\) 0 0
\(617\) 13306.4i 0.868223i 0.900859 + 0.434112i \(0.142938\pi\)
−0.900859 + 0.434112i \(0.857062\pi\)
\(618\) 0 0
\(619\) 1860.24i 0.120791i 0.998175 + 0.0603953i \(0.0192361\pi\)
−0.998175 + 0.0603953i \(0.980764\pi\)
\(620\) 0 0
\(621\) −3394.28 3659.17i −0.219336 0.236453i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15812.7 1.01201
\(626\) 0 0
\(627\) 14396.3 3665.04i 0.916956 0.233441i
\(628\) 0 0
\(629\) 413.838 0.0262334
\(630\) 0 0
\(631\) 16908.2 1.06673 0.533364 0.845886i \(-0.320928\pi\)
0.533364 + 0.845886i \(0.320928\pi\)
\(632\) 0 0
\(633\) −10082.1 + 2566.72i −0.633059 + 0.161166i
\(634\) 0 0
\(635\) −7532.15 −0.470715
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 6323.61 + 11614.6i 0.391484 + 0.719042i
\(640\) 0 0
\(641\) 5036.02i 0.310313i 0.987890 + 0.155157i \(0.0495882\pi\)
−0.987890 + 0.155157i \(0.950412\pi\)
\(642\) 0 0
\(643\) 7842.19i 0.480973i −0.970652 0.240487i \(-0.922693\pi\)
0.970652 0.240487i \(-0.0773070\pi\)
\(644\) 0 0
\(645\) −35743.0 + 9099.56i −2.18199 + 0.555496i
\(646\) 0 0
\(647\) −10476.6 −0.636599 −0.318299 0.947990i \(-0.603112\pi\)
−0.318299 + 0.947990i \(0.603112\pi\)
\(648\) 0 0
\(649\) 20734.5i 1.25408i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12615.9i 0.756049i 0.925796 + 0.378025i \(0.123397\pi\)
−0.925796 + 0.378025i \(0.876603\pi\)
\(654\) 0 0
\(655\) 12163.0 0.725567
\(656\) 0 0
\(657\) 5019.08 + 9218.57i 0.298041 + 0.547414i
\(658\) 0 0
\(659\) 1347.17i 0.0796334i 0.999207 + 0.0398167i \(0.0126774\pi\)
−0.999207 + 0.0398167i \(0.987323\pi\)
\(660\) 0 0
\(661\) 3775.45i 0.222161i 0.993811 + 0.111080i \(0.0354311\pi\)
−0.993811 + 0.111080i \(0.964569\pi\)
\(662\) 0 0
\(663\) −590.529 2319.60i −0.0345916 0.135876i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8129.84 0.471947
\(668\) 0 0
\(669\) 2720.37 + 10685.6i 0.157213 + 0.617532i
\(670\) 0 0
\(671\) −24138.2 −1.38874
\(672\) 0 0
\(673\) 27877.7 1.59674 0.798370 0.602167i \(-0.205696\pi\)
0.798370 + 0.602167i \(0.205696\pi\)
\(674\) 0 0
\(675\) 25765.8 23900.6i 1.46922 1.36286i
\(676\) 0 0
\(677\) −20345.0 −1.15498 −0.577492 0.816397i \(-0.695968\pi\)
−0.577492 + 0.816397i \(0.695968\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −24486.9 + 6233.94i −1.37789 + 0.350786i
\(682\) 0 0
\(683\) 12596.6i 0.705703i 0.935679 + 0.352852i \(0.114788\pi\)
−0.935679 + 0.352852i \(0.885212\pi\)
\(684\) 0 0
\(685\) 40774.9i 2.27435i
\(686\) 0 0
\(687\) −7258.49 28511.3i −0.403098 1.58337i
\(688\) 0 0
\(689\) 1364.39 0.0754412
\(690\) 0 0
\(691\) 9810.01i 0.540073i −0.962850 0.270037i \(-0.912964\pi\)
0.962850 0.270037i \(-0.0870358\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 19959.7i 1.08938i
\(696\) 0 0
\(697\) 792.528 0.0430691
\(698\) 0 0
\(699\) −4171.15 16384.3i −0.225705 0.886567i
\(700\) 0 0
\(701\) 21928.4i 1.18149i 0.806858 + 0.590746i \(0.201166\pi\)
−0.806858 + 0.590746i \(0.798834\pi\)
\(702\) 0 0
\(703\) 4726.54i 0.253577i
\(704\) 0 0
\(705\) 17750.2 4518.89i 0.948242 0.241406i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −20021.8 −1.06056 −0.530279 0.847823i \(-0.677913\pi\)
−0.530279 + 0.847823i \(0.677913\pi\)
\(710\) 0 0
\(711\) 6009.18 3271.72i 0.316965 0.172572i
\(712\) 0 0
\(713\) −2563.27 −0.134635
\(714\) 0 0
\(715\) 62728.0 3.28097
\(716\) 0 0
\(717\) 7465.73 + 29325.4i 0.388860 + 1.52744i
\(718\) 0 0
\(719\) 12521.2 0.649462 0.324731 0.945806i \(-0.394726\pi\)
0.324731 + 0.945806i \(0.394726\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 7918.10 + 31102.3i 0.407299 + 1.59987i
\(724\) 0 0
\(725\) 57245.6i 2.93248i
\(726\) 0 0
\(727\) 27158.2i 1.38547i −0.721190 0.692737i \(-0.756405\pi\)
0.721190 0.692737i \(-0.243595\pi\)
\(728\) 0 0
\(729\) 1476.29 19627.6i 0.0750034 0.997183i
\(730\) 0 0
\(731\) −2186.21 −0.110616
\(732\) 0 0
\(733\) 5443.32i 0.274289i 0.990551 + 0.137144i \(0.0437924\pi\)
−0.990551 + 0.137144i \(0.956208\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16957.8i 0.847555i
\(738\) 0 0
\(739\) 26773.2 1.33270 0.666351 0.745638i \(-0.267855\pi\)
0.666351 + 0.745638i \(0.267855\pi\)
\(740\) 0 0
\(741\) −26492.7 + 6744.57i −1.31340 + 0.334370i
\(742\) 0 0
\(743\) 6409.29i 0.316466i 0.987402 + 0.158233i \(0.0505797\pi\)
−0.987402 + 0.158233i \(0.949420\pi\)
\(744\) 0 0
\(745\) 3898.15i 0.191701i
\(746\) 0 0
\(747\) −8462.78 + 4607.58i −0.414507 + 0.225680i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 18015.4 0.875353 0.437676 0.899133i \(-0.355802\pi\)
0.437676 + 0.899133i \(0.355802\pi\)
\(752\) 0 0
\(753\) 8300.49 2113.16i 0.401709 0.102268i
\(754\) 0 0
\(755\) 23107.6 1.11387
\(756\) 0 0
\(757\) 4064.93 0.195168 0.0975840 0.995227i \(-0.468889\pi\)
0.0975840 + 0.995227i \(0.468889\pi\)
\(758\) 0 0
\(759\) 7513.34 1912.77i 0.359311 0.0914743i
\(760\) 0 0
\(761\) −21439.1 −1.02124 −0.510621 0.859806i \(-0.670584\pi\)
−0.510621 + 0.859806i \(0.670584\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2742.49 1493.16i 0.129614 0.0705689i
\(766\) 0 0
\(767\) 38156.5i 1.79629i
\(768\) 0 0
\(769\) 18622.9i 0.873286i −0.899635 0.436643i \(-0.856167\pi\)
0.899635 0.436643i \(-0.143833\pi\)
\(770\) 0 0
\(771\) −16136.6 + 4108.09i −0.753754 + 0.191893i
\(772\) 0 0
\(773\) −41572.5 −1.93436 −0.967180 0.254094i \(-0.918223\pi\)
−0.967180 + 0.254094i \(0.918223\pi\)
\(774\) 0 0
\(775\) 18049.0i 0.836568i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9051.64i 0.416314i
\(780\) 0 0
\(781\) −20542.6 −0.941195
\(782\) 0 0
\(783\) 21804.0 + 23505.5i 0.995159 + 1.07282i
\(784\) 0 0
\(785\) 21164.9i 0.962301i
\(786\) 0 0
\(787\) 3432.99i 0.155493i −0.996973 0.0777463i \(-0.975228\pi\)
0.996973 0.0777463i \(-0.0247724\pi\)
\(788\) 0 0
\(789\) 4434.84 + 17420.0i 0.200107 + 0.786020i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 44420.2 1.98916
\(794\) 0 0
\(795\) 439.138 + 1724.93i 0.0195907 + 0.0769522i
\(796\) 0 0
\(797\) −9577.83 −0.425676 −0.212838 0.977087i \(-0.568271\pi\)
−0.212838 + 0.977087i \(0.568271\pi\)
\(798\) 0 0
\(799\) 1085.69 0.0480711
\(800\) 0 0
\(801\) 33747.5 18373.9i 1.48865 0.810501i
\(802\) 0 0
\(803\) −16304.8 −0.716541
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6700.26 + 1705.77i −0.292268 + 0.0744063i
\(808\) 0 0
\(809\) 14083.6i 0.612054i −0.952023 0.306027i \(-0.901000\pi\)
0.952023 0.306027i \(-0.0989998\pi\)
\(810\) 0 0
\(811\) 8029.38i 0.347657i −0.984776 0.173828i \(-0.944386\pi\)
0.984776 0.173828i \(-0.0556138\pi\)
\(812\) 0 0
\(813\) 4284.50 + 16829.5i 0.184827 + 0.725999i
\(814\) 0 0
\(815\) −11231.5 −0.482725
\(816\) 0 0
\(817\) 24969.2i 1.06923i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 17786.4i 0.756088i 0.925788 + 0.378044i \(0.123403\pi\)
−0.925788 + 0.378044i \(0.876597\pi\)
\(822\) 0 0
\(823\) −9518.53 −0.403153 −0.201577 0.979473i \(-0.564607\pi\)
−0.201577 + 0.979473i \(0.564607\pi\)
\(824\) 0 0
\(825\) 13468.6 + 52904.6i 0.568383 + 2.23261i
\(826\) 0 0
\(827\) 37498.5i 1.57672i −0.615212 0.788362i \(-0.710929\pi\)
0.615212 0.788362i \(-0.289071\pi\)
\(828\) 0 0
\(829\) 27505.4i 1.15235i −0.817325 0.576176i \(-0.804544\pi\)
0.817325 0.576176i \(-0.195456\pi\)
\(830\) 0 0
\(831\) −24176.3 + 6154.87i −1.00923 + 0.256931i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −72002.3 −2.98412
\(836\) 0 0
\(837\) −6874.59 7411.08i −0.283896 0.306051i
\(838\) 0 0
\(839\) −2040.23 −0.0839528 −0.0419764 0.999119i \(-0.513365\pi\)
−0.0419764 + 0.999119i \(0.513365\pi\)
\(840\) 0 0
\(841\) −27834.9 −1.14129
\(842\) 0 0
\(843\) −5831.47 22906.0i −0.238252 0.935853i
\(844\) 0 0
\(845\) −72861.8 −2.96630
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 5807.00 + 22809.9i 0.234742 + 0.922066i
\(850\) 0 0
\(851\) 2466.76i 0.0993647i
\(852\) 0 0
\(853\) 22267.7i 0.893825i −0.894578 0.446913i \(-0.852524\pi\)
0.894578 0.446913i \(-0.147476\pi\)
\(854\) 0 0
\(855\) −17053.7 31322.6i −0.682133 1.25288i
\(856\) 0 0
\(857\) 27422.4 1.09303 0.546517 0.837448i \(-0.315953\pi\)
0.546517 + 0.837448i \(0.315953\pi\)
\(858\) 0 0
\(859\) 43825.7i 1.74076i −0.492381 0.870380i \(-0.663873\pi\)
0.492381 0.870380i \(-0.336127\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26852.8i 1.05919i 0.848250 + 0.529595i \(0.177656\pi\)
−0.848250 + 0.529595i \(0.822344\pi\)
\(864\) 0 0
\(865\) 25935.4 1.01946
\(866\) 0 0
\(867\) −24560.2 + 6252.60i −0.962062 + 0.244924i
\(868\) 0 0
\(869\) 10628.4i 0.414894i
\(870\) 0 0
\(871\) 31206.5i 1.21400i
\(872\) 0 0
\(873\) −8962.18 16460.9i −0.347450 0.638164i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −39115.3 −1.50608 −0.753039 0.657976i \(-0.771413\pi\)
−0.753039 + 0.657976i \(0.771413\pi\)
\(878\) 0 0
\(879\) −47964.4 + 12210.9i −1.84050 + 0.468559i
\(880\) 0 0
\(881\) −39685.7 −1.51764 −0.758822 0.651299i \(-0.774225\pi\)
−0.758822 + 0.651299i \(0.774225\pi\)
\(882\) 0 0
\(883\) −37785.0 −1.44005 −0.720026 0.693947i \(-0.755870\pi\)
−0.720026 + 0.693947i \(0.755870\pi\)
\(884\) 0 0
\(885\) −48239.5 + 12280.9i −1.83226 + 0.466462i
\(886\) 0 0
\(887\) −14665.4 −0.555148 −0.277574 0.960704i \(-0.589530\pi\)
−0.277574 + 0.960704i \(0.589530\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 25680.8 + 16593.1i 0.965590 + 0.623894i
\(892\) 0 0
\(893\) 12399.9i 0.464665i
\(894\) 0 0
\(895\) 54620.4i 2.03995i
\(896\) 0 0
\(897\) −13826.4 + 3519.96i −0.514660 + 0.131023i
\(898\) 0 0
\(899\) 16465.7 0.610859
\(900\) 0 0
\(901\) 105.505i 0.00390109i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 71470.9i 2.62516i
\(906\) 0 0
\(907\) −38199.7 −1.39846 −0.699229 0.714898i \(-0.746473\pi\)
−0.699229 + 0.714898i \(0.746473\pi\)
\(908\) 0 0
\(909\) −363.776 + 198.059i −0.0132736 + 0.00722684i
\(910\) 0 0
\(911\) 41209.5i 1.49872i 0.662165 + 0.749358i \(0.269638\pi\)
−0.662165 + 0.749358i \(0.730362\pi\)
\(912\) 0 0
\(913\) 14968.0i 0.542573i
\(914\) 0 0
\(915\) 14297.0 + 56158.4i 0.516549 + 2.02900i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 35851.3 1.28686 0.643431 0.765504i \(-0.277511\pi\)
0.643431 + 0.765504i \(0.277511\pi\)
\(920\) 0 0
\(921\) 4799.44 + 18852.2i 0.171712 + 0.674485i
\(922\) 0 0
\(923\) 37803.5 1.34812
\(924\) 0 0
\(925\) 17369.5 0.617411
\(926\) 0 0
\(927\) −4559.38 8374.24i −0.161542 0.296706i
\(928\) 0 0
\(929\) 39315.6 1.38849 0.694243 0.719741i \(-0.255740\pi\)
0.694243 + 0.719741i \(0.255740\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −52384.7 + 13336.2i −1.83815 + 0.467962i
\(934\) 0 0
\(935\) 4850.61i 0.169660i
\(936\) 0 0
\(937\) 25396.6i 0.885455i −0.896656 0.442728i \(-0.854011\pi\)
0.896656 0.442728i \(-0.145989\pi\)
\(938\) 0 0
\(939\) 4218.97 + 16572.1i 0.146625 + 0.575942i
\(940\) 0 0
\(941\) −18176.1 −0.629676 −0.314838 0.949145i \(-0.601950\pi\)
−0.314838 + 0.949145i \(0.601950\pi\)
\(942\) 0 0
\(943\) 4724.01i 0.163134i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 42110.2i 1.44498i −0.691380 0.722491i \(-0.742997\pi\)
0.691380 0.722491i \(-0.257003\pi\)
\(948\) 0 0
\(949\) 30004.8 1.02634
\(950\) 0 0
\(951\) −7664.57 30106.4i −0.261347 1.02657i
\(952\) 0 0
\(953\) 18521.2i 0.629551i −0.949166 0.314775i \(-0.898071\pi\)
0.949166 0.314775i \(-0.101929\pi\)
\(954\) 0 0
\(955\) 87377.4i 2.96070i
\(956\) 0 0
\(957\) −48263.7 + 12287.1i −1.63024 + 0.415032i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 24599.5 0.825736
\(962\) 0 0
\(963\) 665.147 + 1221.68i 0.0222576 + 0.0408807i
\(964\) 0 0
\(965\) −42853.9 −1.42955
\(966\) 0 0
\(967\) 48504.3 1.61302 0.806512 0.591218i \(-0.201353\pi\)
0.806512 + 0.591218i \(0.201353\pi\)
\(968\) 0 0
\(969\) −521.542 2048.62i −0.0172903 0.0679164i
\(970\) 0 0
\(971\) 33158.4 1.09589 0.547943 0.836516i \(-0.315411\pi\)
0.547943 + 0.836516i \(0.315411\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −24785.5 97357.4i −0.814125 3.19788i
\(976\) 0 0
\(977\) 34135.5i 1.11780i −0.829234 0.558901i \(-0.811223\pi\)
0.829234 0.558901i \(-0.188777\pi\)
\(978\) 0 0
\(979\) 59688.8i 1.94858i
\(980\) 0 0
\(981\) −15902.7 + 8658.27i −0.517568 + 0.281791i
\(982\) 0 0
\(983\) 339.463 0.0110144 0.00550721 0.999985i \(-0.498247\pi\)
0.00550721 + 0.999985i \(0.498247\pi\)
\(984\) 0 0
\(985\) 80945.2i 2.61841i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 13031.3i 0.418981i
\(990\) 0 0
\(991\) −559.940 −0.0179486 −0.00897431 0.999960i \(-0.502857\pi\)
−0.00897431 + 0.999960i \(0.502857\pi\)
\(992\) 0 0
\(993\) 210.655 53.6292i 0.00673207 0.00171387i
\(994\) 0 0
\(995\) 85556.5i 2.72595i
\(996\) 0 0
\(997\) 12840.4i 0.407884i 0.978983 + 0.203942i \(0.0653754\pi\)
−0.978983 + 0.203942i \(0.934625\pi\)
\(998\) 0 0
\(999\) 7132.06 6615.76i 0.225874 0.209523i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.4.f.c.293.11 12
3.2 odd 2 inner 588.4.f.c.293.1 12
7.2 even 3 84.4.k.c.17.2 yes 12
7.3 odd 6 84.4.k.c.5.5 yes 12
7.4 even 3 588.4.k.c.509.2 12
7.5 odd 6 588.4.k.c.521.5 12
7.6 odd 2 inner 588.4.f.c.293.2 12
21.2 odd 6 84.4.k.c.17.5 yes 12
21.5 even 6 588.4.k.c.521.2 12
21.11 odd 6 588.4.k.c.509.5 12
21.17 even 6 84.4.k.c.5.2 12
21.20 even 2 inner 588.4.f.c.293.12 12
28.3 even 6 336.4.bc.c.257.2 12
28.23 odd 6 336.4.bc.c.17.5 12
84.23 even 6 336.4.bc.c.17.2 12
84.59 odd 6 336.4.bc.c.257.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.4.k.c.5.2 12 21.17 even 6
84.4.k.c.5.5 yes 12 7.3 odd 6
84.4.k.c.17.2 yes 12 7.2 even 3
84.4.k.c.17.5 yes 12 21.2 odd 6
336.4.bc.c.17.2 12 84.23 even 6
336.4.bc.c.17.5 12 28.23 odd 6
336.4.bc.c.257.2 12 28.3 even 6
336.4.bc.c.257.5 12 84.59 odd 6
588.4.f.c.293.1 12 3.2 odd 2 inner
588.4.f.c.293.2 12 7.6 odd 2 inner
588.4.f.c.293.11 12 1.1 even 1 trivial
588.4.f.c.293.12 12 21.20 even 2 inner
588.4.k.c.509.2 12 7.4 even 3
588.4.k.c.509.5 12 21.11 odd 6
588.4.k.c.521.2 12 21.5 even 6
588.4.k.c.521.5 12 7.5 odd 6