L(s) = 1 | + (−11.7 − 4.69i)2-s + (22.7 + 2.47i)3-s + (70.1 + 66.4i)4-s + (−121. + 142. i)5-s + (−256. − 136. i)6-s + (−243. − 146. i)7-s + (−173. − 374. i)8-s + (−198. − 43.7i)9-s + (2.09e3 − 1.11e3i)10-s + (423. + 22.9i)11-s + (1.43e3 + 1.68e3i)12-s + (394. + 1.79e3i)13-s + (2.18e3 + 2.86e3i)14-s + (−3.11e3 + 2.94e3i)15-s + (−51.4 − 948. i)16-s + (4.75e3 − 2.86e3i)17-s + ⋯ |
L(s) = 1 | + (−1.47 − 0.586i)2-s + (0.844 + 0.0918i)3-s + (1.09 + 1.03i)4-s + (−0.968 + 1.14i)5-s + (−1.18 − 0.629i)6-s + (−0.710 − 0.427i)7-s + (−0.338 − 0.731i)8-s + (−0.272 − 0.0599i)9-s + (2.09 − 1.11i)10-s + (0.318 + 0.0172i)11-s + (0.829 + 0.976i)12-s + (0.179 + 0.814i)13-s + (0.795 + 1.04i)14-s + (−0.922 + 0.873i)15-s + (−0.0125 − 0.231i)16-s + (0.968 − 0.582i)17-s + ⋯ |
Λ(s)=(=(59s/2ΓC(s)L(s)(−0.236+0.971i)Λ(7−s)
Λ(s)=(=(59s/2ΓC(s+3)L(s)(−0.236+0.971i)Λ(1−s)
Degree: |
2 |
Conductor: |
59
|
Sign: |
−0.236+0.971i
|
Analytic conductor: |
13.5731 |
Root analytic conductor: |
3.68418 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ59(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 59, ( :3), −0.236+0.971i)
|
Particular Values
L(27) |
≈ |
0.319058−0.406230i |
L(21) |
≈ |
0.319058−0.406230i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 59 | 1+(−2.04e5+1.38e4i)T |
good | 2 | 1+(11.7+4.69i)T+(46.4+44.0i)T2 |
| 3 | 1+(−22.7−2.47i)T+(711.+156.i)T2 |
| 5 | 1+(121.−142.i)T+(−2.52e3−1.54e4i)T2 |
| 7 | 1+(243.+146.i)T+(5.51e4+1.03e5i)T2 |
| 11 | 1+(−423.−22.9i)T+(1.76e6+1.91e5i)T2 |
| 13 | 1+(−394.−1.79e3i)T+(−4.38e6+2.02e6i)T2 |
| 17 | 1+(−4.75e3+2.86e3i)T+(1.13e7−2.13e7i)T2 |
| 19 | 1+(−2.83e3+1.02e4i)T+(−4.03e7−2.42e7i)T2 |
| 23 | 1+(−91.8+62.2i)T+(5.47e7−1.37e8i)T2 |
| 29 | 1+(5.96e3+1.49e4i)T+(−4.31e8+4.09e8i)T2 |
| 31 | 1+(−2.29e3+635.i)T+(7.60e8−4.57e8i)T2 |
| 37 | 1+(−3.43e4+7.42e4i)T+(−1.66e9−1.95e9i)T2 |
| 41 | 1+(3.63e4−5.35e4i)T+(−1.75e9−4.41e9i)T2 |
| 43 | 1+(3.02e4−1.63e3i)T+(6.28e9−6.83e8i)T2 |
| 47 | 1+(−9.91e4+8.41e4i)T+(1.74e9−1.06e10i)T2 |
| 53 | 1+(3.80e3−7.18e3i)T+(−1.24e10−1.83e10i)T2 |
| 61 | 1+(1.15e5+4.60e4i)T+(3.74e10+3.54e10i)T2 |
| 67 | 1+(1.61e5+3.49e5i)T+(−5.85e10+6.89e10i)T2 |
| 71 | 1+(−3.56e5−4.19e5i)T+(−2.07e10+1.26e11i)T2 |
| 73 | 1+(2.60e5+3.42e5i)T+(−4.04e10+1.45e11i)T2 |
| 79 | 1+(4.43e5−4.82e4i)T+(2.37e11−5.22e10i)T2 |
| 83 | 1+(−2.64e5−7.83e5i)T+(−2.60e11+1.97e11i)T2 |
| 89 | 1+(−5.09e5+2.02e5i)T+(3.60e11−3.41e11i)T2 |
| 97 | 1+(−4.65e5+6.12e5i)T+(−2.22e11−8.02e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.73679052405196127803872971449, −11.77642168270055468917105831652, −11.13351158731963766249617291400, −9.851138421725538589157615337335, −9.013236603515977176476739107673, −7.73945329134201013997462143914, −6.91314980393714960391647461275, −3.58908202148077005264250797790, −2.60618712233733359487650274054, −0.36511246355863048265736975772,
1.17551897562177188707886571631, 3.50732123094780966875300034180, 5.82959370988086011602351707067, 7.69190403199463045919323135133, 8.293269639893807611218195653644, 9.080994314976656704367880291553, 10.18581411948739001500739879714, 11.94024996765618355090128701791, 12.97852550932643518932127505563, 14.65768057083491977296527200529