Properties

Label 2-59-59.10-c6-0-14
Degree $2$
Conductor $59$
Sign $-0.236 + 0.971i$
Analytic cond. $13.5731$
Root an. cond. $3.68418$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−11.7 − 4.69i)2-s + (22.7 + 2.47i)3-s + (70.1 + 66.4i)4-s + (−121. + 142. i)5-s + (−256. − 136. i)6-s + (−243. − 146. i)7-s + (−173. − 374. i)8-s + (−198. − 43.7i)9-s + (2.09e3 − 1.11e3i)10-s + (423. + 22.9i)11-s + (1.43e3 + 1.68e3i)12-s + (394. + 1.79e3i)13-s + (2.18e3 + 2.86e3i)14-s + (−3.11e3 + 2.94e3i)15-s + (−51.4 − 948. i)16-s + (4.75e3 − 2.86e3i)17-s + ⋯
L(s)  = 1  + (−1.47 − 0.586i)2-s + (0.844 + 0.0918i)3-s + (1.09 + 1.03i)4-s + (−0.968 + 1.14i)5-s + (−1.18 − 0.629i)6-s + (−0.710 − 0.427i)7-s + (−0.338 − 0.731i)8-s + (−0.272 − 0.0599i)9-s + (2.09 − 1.11i)10-s + (0.318 + 0.0172i)11-s + (0.829 + 0.976i)12-s + (0.179 + 0.814i)13-s + (0.795 + 1.04i)14-s + (−0.922 + 0.873i)15-s + (−0.0125 − 0.231i)16-s + (0.968 − 0.582i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.236 + 0.971i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.236 + 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(59\)
Sign: $-0.236 + 0.971i$
Analytic conductor: \(13.5731\)
Root analytic conductor: \(3.68418\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{59} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 59,\ (\ :3),\ -0.236 + 0.971i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.319058 - 0.406230i\)
\(L(\frac12)\) \(\approx\) \(0.319058 - 0.406230i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad59 \( 1 + (-2.04e5 + 1.38e4i)T \)
good2 \( 1 + (11.7 + 4.69i)T + (46.4 + 44.0i)T^{2} \)
3 \( 1 + (-22.7 - 2.47i)T + (711. + 156. i)T^{2} \)
5 \( 1 + (121. - 142. i)T + (-2.52e3 - 1.54e4i)T^{2} \)
7 \( 1 + (243. + 146. i)T + (5.51e4 + 1.03e5i)T^{2} \)
11 \( 1 + (-423. - 22.9i)T + (1.76e6 + 1.91e5i)T^{2} \)
13 \( 1 + (-394. - 1.79e3i)T + (-4.38e6 + 2.02e6i)T^{2} \)
17 \( 1 + (-4.75e3 + 2.86e3i)T + (1.13e7 - 2.13e7i)T^{2} \)
19 \( 1 + (-2.83e3 + 1.02e4i)T + (-4.03e7 - 2.42e7i)T^{2} \)
23 \( 1 + (-91.8 + 62.2i)T + (5.47e7 - 1.37e8i)T^{2} \)
29 \( 1 + (5.96e3 + 1.49e4i)T + (-4.31e8 + 4.09e8i)T^{2} \)
31 \( 1 + (-2.29e3 + 635. i)T + (7.60e8 - 4.57e8i)T^{2} \)
37 \( 1 + (-3.43e4 + 7.42e4i)T + (-1.66e9 - 1.95e9i)T^{2} \)
41 \( 1 + (3.63e4 - 5.35e4i)T + (-1.75e9 - 4.41e9i)T^{2} \)
43 \( 1 + (3.02e4 - 1.63e3i)T + (6.28e9 - 6.83e8i)T^{2} \)
47 \( 1 + (-9.91e4 + 8.41e4i)T + (1.74e9 - 1.06e10i)T^{2} \)
53 \( 1 + (3.80e3 - 7.18e3i)T + (-1.24e10 - 1.83e10i)T^{2} \)
61 \( 1 + (1.15e5 + 4.60e4i)T + (3.74e10 + 3.54e10i)T^{2} \)
67 \( 1 + (1.61e5 + 3.49e5i)T + (-5.85e10 + 6.89e10i)T^{2} \)
71 \( 1 + (-3.56e5 - 4.19e5i)T + (-2.07e10 + 1.26e11i)T^{2} \)
73 \( 1 + (2.60e5 + 3.42e5i)T + (-4.04e10 + 1.45e11i)T^{2} \)
79 \( 1 + (4.43e5 - 4.82e4i)T + (2.37e11 - 5.22e10i)T^{2} \)
83 \( 1 + (-2.64e5 - 7.83e5i)T + (-2.60e11 + 1.97e11i)T^{2} \)
89 \( 1 + (-5.09e5 + 2.02e5i)T + (3.60e11 - 3.41e11i)T^{2} \)
97 \( 1 + (-4.65e5 + 6.12e5i)T + (-2.22e11 - 8.02e11i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.73679052405196127803872971449, −11.77642168270055468917105831652, −11.13351158731963766249617291400, −9.851138421725538589157615337335, −9.013236603515977176476739107673, −7.73945329134201013997462143914, −6.91314980393714960391647461275, −3.58908202148077005264250797790, −2.60618712233733359487650274054, −0.36511246355863048265736975772, 1.17551897562177188707886571631, 3.50732123094780966875300034180, 5.82959370988086011602351707067, 7.69190403199463045919323135133, 8.293269639893807611218195653644, 9.080994314976656704367880291553, 10.18581411948739001500739879714, 11.94024996765618355090128701791, 12.97852550932643518932127505563, 14.65768057083491977296527200529

Graph of the $Z$-function along the critical line