L(s) = 1 | + (−14.5 − 5.78i)2-s + (45.9 + 5.00i)3-s + (130. + 123. i)4-s + (99.9 − 117. i)5-s + (−638. − 338. i)6-s + (−238. − 143. i)7-s + (−760. − 1.64e3i)8-s + (1.37e3 + 303. i)9-s + (−2.13e3 + 1.12e3i)10-s + (1.15e3 + 62.7i)11-s + (5.38e3 + 6.34e3i)12-s + (−651. − 2.96e3i)13-s + (2.63e3 + 3.46e3i)14-s + (5.18e3 − 4.91e3i)15-s + (907. + 1.67e4i)16-s + (−3.39e3 + 2.04e3i)17-s + ⋯ |
L(s) = 1 | + (−1.81 − 0.722i)2-s + (1.70 + 0.185i)3-s + (2.04 + 1.93i)4-s + (0.799 − 0.941i)5-s + (−2.95 − 1.56i)6-s + (−0.696 − 0.419i)7-s + (−1.48 − 3.20i)8-s + (1.88 + 0.415i)9-s + (−2.13 + 1.12i)10-s + (0.869 + 0.0471i)11-s + (3.11 + 3.67i)12-s + (−0.296 − 1.34i)13-s + (0.960 + 1.26i)14-s + (1.53 − 1.45i)15-s + (0.221 + 4.08i)16-s + (−0.691 + 0.416i)17-s + ⋯ |
Λ(s)=(=(59s/2ΓC(s)L(s)(−0.0482+0.998i)Λ(7−s)
Λ(s)=(=(59s/2ΓC(s+3)L(s)(−0.0482+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
59
|
Sign: |
−0.0482+0.998i
|
Analytic conductor: |
13.5731 |
Root analytic conductor: |
3.68418 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ59(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 59, ( :3), −0.0482+0.998i)
|
Particular Values
L(27) |
≈ |
1.05126−1.10324i |
L(21) |
≈ |
1.05126−1.10324i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 59 | 1+(−1.98e5+5.25e4i)T |
good | 2 | 1+(14.5+5.78i)T+(46.4+44.0i)T2 |
| 3 | 1+(−45.9−5.00i)T+(711.+156.i)T2 |
| 5 | 1+(−99.9+117.i)T+(−2.52e3−1.54e4i)T2 |
| 7 | 1+(238.+143.i)T+(5.51e4+1.03e5i)T2 |
| 11 | 1+(−1.15e3−62.7i)T+(1.76e6+1.91e5i)T2 |
| 13 | 1+(651.+2.96e3i)T+(−4.38e6+2.02e6i)T2 |
| 17 | 1+(3.39e3−2.04e3i)T+(1.13e7−2.13e7i)T2 |
| 19 | 1+(9.18−33.0i)T+(−4.03e7−2.42e7i)T2 |
| 23 | 1+(−1.12e4+7.66e3i)T+(5.47e7−1.37e8i)T2 |
| 29 | 1+(−5.99e3−1.50e4i)T+(−4.31e8+4.09e8i)T2 |
| 31 | 1+(1.20e4−3.34e3i)T+(7.60e8−4.57e8i)T2 |
| 37 | 1+(−2.98e4+6.44e4i)T+(−1.66e9−1.95e9i)T2 |
| 41 | 1+(−1.17e4+1.73e4i)T+(−1.75e9−4.41e9i)T2 |
| 43 | 1+(8.76e4−4.75e3i)T+(6.28e9−6.83e8i)T2 |
| 47 | 1+(−2.27e4+1.93e4i)T+(1.74e9−1.06e10i)T2 |
| 53 | 1+(6.20e4−1.17e5i)T+(−1.24e10−1.83e10i)T2 |
| 61 | 1+(−3.35e5−1.33e5i)T+(3.74e10+3.54e10i)T2 |
| 67 | 1+(8.86e4+1.91e5i)T+(−5.85e10+6.89e10i)T2 |
| 71 | 1+(−1.32e5−1.55e5i)T+(−2.07e10+1.26e11i)T2 |
| 73 | 1+(−2.97e4−3.91e4i)T+(−4.04e10+1.45e11i)T2 |
| 79 | 1+(−5.09e5+5.53e4i)T+(2.37e11−5.22e10i)T2 |
| 83 | 1+(−4.13e4−1.22e5i)T+(−2.60e11+1.97e11i)T2 |
| 89 | 1+(1.12e5−4.48e4i)T+(3.60e11−3.41e11i)T2 |
| 97 | 1+(1.01e6−1.33e6i)T+(−2.22e11−8.02e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.17842045126496153995780461923, −12.63422407433817777675024792239, −10.60436104101054736292192896035, −9.651907979434952911967441456429, −9.037705862847888199579775450092, −8.268880168201946092844095818086, −6.96567573540581604665915134954, −3.56328530672497930613245054611, −2.30505372631906119674211350012, −0.972033458043886487736252897757,
1.75296324935313023634711915907, 2.74847386742283004333190029810, 6.51606669121723199816699419985, 7.01984644826513738921377128293, 8.492510089821092042047482959177, 9.480728369614491140511067608330, 9.714438142429367538915748396396, 11.40319686717266526557860917335, 13.66899702158180470534919850970, 14.57191681257100252040687120642