L(s) = 1 | + (3.80 + 1.51i)2-s + (26.7 + 2.91i)3-s + (−34.2 − 32.4i)4-s + (−125. + 148. i)5-s + (97.5 + 51.7i)6-s + (−29.7 − 17.9i)7-s + (−191. − 413. i)8-s + (−2.40 − 0.529i)9-s + (−704. + 373. i)10-s + (−1.82e3 − 99.2i)11-s + (−823. − 970. i)12-s + (−176. − 804. i)13-s + (−86.1 − 113. i)14-s + (−3.80e3 + 3.60e3i)15-s + (62.5 + 1.15e3i)16-s + (2.32e3 − 1.40e3i)17-s + ⋯ |
L(s) = 1 | + (0.475 + 0.189i)2-s + (0.992 + 0.107i)3-s + (−0.535 − 0.507i)4-s + (−1.00 + 1.18i)5-s + (0.451 + 0.239i)6-s + (−0.0868 − 0.0522i)7-s + (−0.373 − 0.807i)8-s + (−0.00329 − 0.000726i)9-s + (−0.704 + 0.373i)10-s + (−1.37 − 0.0745i)11-s + (−0.476 − 0.561i)12-s + (−0.0805 − 0.365i)13-s + (−0.0313 − 0.0412i)14-s + (−1.12 + 1.06i)15-s + (0.0152 + 0.281i)16-s + (0.473 − 0.284i)17-s + ⋯ |
Λ(s)=(=(59s/2ΓC(s)L(s)(−0.996+0.0841i)Λ(7−s)
Λ(s)=(=(59s/2ΓC(s+3)L(s)(−0.996+0.0841i)Λ(1−s)
Degree: |
2 |
Conductor: |
59
|
Sign: |
−0.996+0.0841i
|
Analytic conductor: |
13.5731 |
Root analytic conductor: |
3.68418 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ59(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 59, ( :3), −0.996+0.0841i)
|
Particular Values
L(27) |
≈ |
0.0120787−0.286600i |
L(21) |
≈ |
0.0120787−0.286600i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 59 | 1+(−7.82e4−1.89e5i)T |
good | 2 | 1+(−3.80−1.51i)T+(46.4+44.0i)T2 |
| 3 | 1+(−26.7−2.91i)T+(711.+156.i)T2 |
| 5 | 1+(125.−148.i)T+(−2.52e3−1.54e4i)T2 |
| 7 | 1+(29.7+17.9i)T+(5.51e4+1.03e5i)T2 |
| 11 | 1+(1.82e3+99.2i)T+(1.76e6+1.91e5i)T2 |
| 13 | 1+(176.+804.i)T+(−4.38e6+2.02e6i)T2 |
| 17 | 1+(−2.32e3+1.40e3i)T+(1.13e7−2.13e7i)T2 |
| 19 | 1+(1.77e3−6.37e3i)T+(−4.03e7−2.42e7i)T2 |
| 23 | 1+(5.26e3−3.56e3i)T+(5.47e7−1.37e8i)T2 |
| 29 | 1+(−6.05e3−1.51e4i)T+(−4.31e8+4.09e8i)T2 |
| 31 | 1+(1.02e4−2.85e3i)T+(7.60e8−4.57e8i)T2 |
| 37 | 1+(−4.05e3+8.76e3i)T+(−1.66e9−1.95e9i)T2 |
| 41 | 1+(−2.28e4+3.37e4i)T+(−1.75e9−4.41e9i)T2 |
| 43 | 1+(−6.41e4+3.47e3i)T+(6.28e9−6.83e8i)T2 |
| 47 | 1+(−1.70e4+1.44e4i)T+(1.74e9−1.06e10i)T2 |
| 53 | 1+(9.43e4−1.77e5i)T+(−1.24e10−1.83e10i)T2 |
| 61 | 1+(−1.64e5−6.54e4i)T+(3.74e10+3.54e10i)T2 |
| 67 | 1+(1.38e5+3.00e5i)T+(−5.85e10+6.89e10i)T2 |
| 71 | 1+(−3.03e5−3.57e5i)T+(−2.07e10+1.26e11i)T2 |
| 73 | 1+(−9.31e4−1.22e5i)T+(−4.04e10+1.45e11i)T2 |
| 79 | 1+(1.66e5−1.81e4i)T+(2.37e11−5.22e10i)T2 |
| 83 | 1+(2.77e5+8.24e5i)T+(−2.60e11+1.97e11i)T2 |
| 89 | 1+(9.39e5−3.74e5i)T+(3.60e11−3.41e11i)T2 |
| 97 | 1+(6.93e5−9.12e5i)T+(−2.22e11−8.02e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.51412158167275405989269350421, −13.74831348616399756010787941318, −12.46562599330831346547119562555, −10.85444433128089811330641563611, −9.900101422500633841378818028640, −8.350812032342961203767352745648, −7.37218448128994847123508485946, −5.65937799827426863587510132785, −3.87244146543973356310654583697, −2.86890699525019101656253224030,
0.087060008746063258468802699876, 2.66224526129260916175381458801, 4.03830390245798747729318852242, 5.15148339324423241759456046642, 7.85003655827736469972696227418, 8.302097337345944054118396143889, 9.363857628783182190394654186203, 11.37770643007265864696560078248, 12.58639570806949117343393349073, 13.13342440787641160204612906555