L(s) = 1 | + (0.148 + 0.107i)2-s + (−0.454 − 1.39i)3-s + (−0.607 − 1.87i)4-s + (0.0833 − 0.256i)6-s − 3.26·7-s + (0.224 − 0.690i)8-s + (0.674 − 0.489i)9-s + (−1.61 − 1.17i)11-s + (−2.34 + 1.70i)12-s + (0.239 − 0.174i)13-s + (−0.483 − 0.351i)14-s + (−3.07 + 2.23i)16-s + (−1.59 + 4.91i)17-s + 0.152·18-s + (0.534 − 1.64i)19-s + ⋯ |
L(s) = 1 | + (0.104 + 0.0761i)2-s + (−0.262 − 0.808i)3-s + (−0.303 − 0.935i)4-s + (0.0340 − 0.104i)6-s − 1.23·7-s + (0.0793 − 0.244i)8-s + (0.224 − 0.163i)9-s + (−0.487 − 0.354i)11-s + (−0.675 + 0.491i)12-s + (0.0665 − 0.0483i)13-s + (−0.129 − 0.0938i)14-s + (−0.768 + 0.558i)16-s + (−0.386 + 1.19i)17-s + 0.0359·18-s + (0.122 − 0.377i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.904 - 0.425i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.904 - 0.425i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.103595 + 0.463461i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.103595 + 0.463461i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
good | 2 | \( 1 + (-0.148 - 0.107i)T + (0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (0.454 + 1.39i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + 3.26T + 7T^{2} \) |
| 11 | \( 1 + (1.61 + 1.17i)T + (3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (-0.239 + 0.174i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (1.59 - 4.91i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-0.534 + 1.64i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (0.711 + 0.516i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (-1.82 - 5.62i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.88 + 5.80i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (6.54 - 4.75i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-0.821 + 0.596i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 3.24T + 43T^{2} \) |
| 47 | \( 1 + (-1.30 - 4.01i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (2.50 + 7.70i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (4.80 - 3.48i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (0.740 + 0.538i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (-2.12 + 6.55i)T + (-54.2 - 39.3i)T^{2} \) |
| 71 | \( 1 + (1.84 + 5.67i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (7.14 + 5.19i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (2.39 + 7.38i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-4.48 + 13.8i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + (6.08 + 4.42i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (2.07 + 6.39i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14682520090661308623748955134, −9.356804459501565880500164725572, −8.397876649364017300644094738019, −7.14526713685566798578712612110, −6.35875046747294065846334799433, −5.89768711700079069403823385074, −4.60461972244240874854870165524, −3.31540511669543602159958471831, −1.70981889044240014554306706027, −0.25361856198140127864437841069,
2.60970622539301118039507228355, 3.60842975345267817801450237214, 4.50069349865512956302245020122, 5.40532754456736821177181456974, 6.77359939344280756447750777841, 7.51189386641160859246334040002, 8.639718826916471985913184351634, 9.559194524379681567579814063267, 10.05467683582807542353620638071, 11.04383095119051804040265730676