L(s) = 1 | + (−1.19 − 0.760i)2-s + (0.707 − 0.707i)3-s + (0.844 + 1.81i)4-s + (0.432 − 2.19i)5-s + (−1.38 + 0.305i)6-s + (−0.611 − 0.611i)7-s + (0.371 − 2.80i)8-s − 1.00i·9-s + (−2.18 + 2.28i)10-s + 5.12i·11-s + (1.87 + 0.685i)12-s + (1.76 + 1.76i)13-s + (0.264 + 1.19i)14-s + (−1.24 − 1.85i)15-s + (−2.57 + 3.06i)16-s + (−3.76 + 3.76i)17-s + ⋯ |
L(s) = 1 | + (−0.843 − 0.537i)2-s + (0.408 − 0.408i)3-s + (0.422 + 0.906i)4-s + (0.193 − 0.981i)5-s + (−0.563 + 0.124i)6-s + (−0.231 − 0.231i)7-s + (0.131 − 0.991i)8-s − 0.333i·9-s + (−0.690 + 0.723i)10-s + 1.54i·11-s + (0.542 + 0.197i)12-s + (0.488 + 0.488i)13-s + (0.0706 + 0.319i)14-s + (−0.321 − 0.479i)15-s + (−0.643 + 0.765i)16-s + (−0.912 + 0.912i)17-s + ⋯ |
Λ(s)=(=(60s/2ΓC(s)L(s)(0.455+0.890i)Λ(2−s)
Λ(s)=(=(60s/2ΓC(s+1/2)L(s)(0.455+0.890i)Λ(1−s)
Degree: |
2 |
Conductor: |
60
= 22⋅3⋅5
|
Sign: |
0.455+0.890i
|
Analytic conductor: |
0.479102 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ60(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 60, ( :1/2), 0.455+0.890i)
|
Particular Values
L(1) |
≈ |
0.593269−0.362829i |
L(21) |
≈ |
0.593269−0.362829i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.19+0.760i)T |
| 3 | 1+(−0.707+0.707i)T |
| 5 | 1+(−0.432+2.19i)T |
good | 7 | 1+(0.611+0.611i)T+7iT2 |
| 11 | 1−5.12iT−11T2 |
| 13 | 1+(−1.76−1.76i)T+13iT2 |
| 17 | 1+(3.76−3.76i)T−17iT2 |
| 19 | 1−1.22T+19T2 |
| 23 | 1+(−1.07+1.07i)T−23iT2 |
| 29 | 1−0.864iT−29T2 |
| 31 | 1+7.81iT−31T2 |
| 37 | 1+(1.76−1.76i)T−37iT2 |
| 41 | 1−5.52T+41T2 |
| 43 | 1+(6.20−6.20i)T−43iT2 |
| 47 | 1+(2.29+2.29i)T+47iT2 |
| 53 | 1+(2.62+2.62i)T+53iT2 |
| 59 | 1−0.528T+59T2 |
| 61 | 1−4.98T+61T2 |
| 67 | 1+(−6.20−6.20i)T+67iT2 |
| 71 | 1+8.10iT−71T2 |
| 73 | 1+(2.25+2.25i)T+73iT2 |
| 79 | 1+15.9T+79T2 |
| 83 | 1+(−7.95+7.95i)T−83iT2 |
| 89 | 1−7.25iT−89T2 |
| 97 | 1+(−0.793+0.793i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.07280915437925742761061930203, −13.28872046499776772258780600760, −12.72877450288727286117313601928, −11.58217129438887475327560269800, −10.01227946914180345037072447335, −9.110131533073862380999070467587, −8.026410503161687663804125371656, −6.69482606699020307559995109714, −4.22186681257837288851574594309, −1.87502238686416301347343536366,
2.99794960363558667981740078565, 5.64597234276793293522754012365, 6.89629736342839008472931529207, 8.336848530553082208476513259169, 9.352777320142061324897566286716, 10.61522855440015706435788908581, 11.32696421580510847118164097777, 13.61514662192035021469543101376, 14.33737008950654352740652010545, 15.60832160100677031397348988730