L(s) = 1 | + (0.394 − 1.35i)2-s + (0.707 − 0.707i)3-s + (−1.68 − 1.07i)4-s + (−1.75 + 1.38i)5-s + (−0.681 − 1.23i)6-s + (2.47 + 2.47i)7-s + (−2.11 + 1.87i)8-s − 1.00i·9-s + (1.19 + 2.92i)10-s − 3.02i·11-s + (−1.95 + 0.437i)12-s + (0.363 + 0.363i)13-s + (4.34 − 2.38i)14-s + (−0.256 + 2.22i)15-s + (1.70 + 3.61i)16-s + (−2.36 + 2.36i)17-s + ⋯ |
L(s) = 1 | + (0.278 − 0.960i)2-s + (0.408 − 0.408i)3-s + (−0.844 − 0.535i)4-s + (−0.783 + 0.621i)5-s + (−0.278 − 0.505i)6-s + (0.936 + 0.936i)7-s + (−0.749 + 0.661i)8-s − 0.333i·9-s + (0.378 + 0.925i)10-s − 0.913i·11-s + (−0.563 + 0.126i)12-s + (0.100 + 0.100i)13-s + (1.16 − 0.638i)14-s + (−0.0663 + 0.573i)15-s + (0.426 + 0.904i)16-s + (−0.573 + 0.573i)17-s + ⋯ |
Λ(s)=(=(60s/2ΓC(s)L(s)(0.330+0.943i)Λ(2−s)
Λ(s)=(=(60s/2ΓC(s+1/2)L(s)(0.330+0.943i)Λ(1−s)
Degree: |
2 |
Conductor: |
60
= 22⋅3⋅5
|
Sign: |
0.330+0.943i
|
Analytic conductor: |
0.479102 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ60(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 60, ( :1/2), 0.330+0.943i)
|
Particular Values
L(1) |
≈ |
0.792001−0.561615i |
L(21) |
≈ |
0.792001−0.561615i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.394+1.35i)T |
| 3 | 1+(−0.707+0.707i)T |
| 5 | 1+(1.75−1.38i)T |
good | 7 | 1+(−2.47−2.47i)T+7iT2 |
| 11 | 1+3.02iT−11T2 |
| 13 | 1+(−0.363−0.363i)T+13iT2 |
| 17 | 1+(2.36−2.36i)T−17iT2 |
| 19 | 1+4.95T+19T2 |
| 23 | 1+(0.900−0.900i)T−23iT2 |
| 29 | 1+3.50iT−29T2 |
| 31 | 1+3.85iT−31T2 |
| 37 | 1+(0.363−0.363i)T−37iT2 |
| 41 | 1−2.72T+41T2 |
| 43 | 1+(−3.92+3.92i)T−43iT2 |
| 47 | 1+(−5.85−5.85i)T+47iT2 |
| 53 | 1+(−3.14−3.14i)T+53iT2 |
| 59 | 1−8.68T+59T2 |
| 61 | 1+15.2T+61T2 |
| 67 | 1+(3.92+3.92i)T+67iT2 |
| 71 | 1−4.25iT−71T2 |
| 73 | 1+(−9.28−9.28i)T+73iT2 |
| 79 | 1−0.399T+79T2 |
| 83 | 1+(0.199−0.199i)T−83iT2 |
| 89 | 1+4.28iT−89T2 |
| 97 | 1+(−6.73+6.73i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.74341861826813309516692583027, −13.74840395062219573683379365608, −12.46900599999743916059175353573, −11.50594775644716363232487736596, −10.74649585344510716254481436925, −8.897687794369621347888782138137, −8.073896344998307621880360215356, −6.01914623310028412066079288851, −4.10845597245463350886600356084, −2.42227100475349896467561560502,
4.10820850581918588614915726140, 4.86935030706652868948885848305, 7.10037216449274047057385336481, 8.059719745717866554026791003454, 9.084434006859695675261731118522, 10.70336046015381301690921460705, 12.23285714176562024623902312620, 13.37490385790743472992871812497, 14.49378797098679069970408126560, 15.25500950041580789057019742191