Properties

Label 2-60-20.3-c1-0-5
Degree $2$
Conductor $60$
Sign $0.330 + 0.943i$
Analytic cond. $0.479102$
Root an. cond. $0.692172$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.394 − 1.35i)2-s + (0.707 − 0.707i)3-s + (−1.68 − 1.07i)4-s + (−1.75 + 1.38i)5-s + (−0.681 − 1.23i)6-s + (2.47 + 2.47i)7-s + (−2.11 + 1.87i)8-s − 1.00i·9-s + (1.19 + 2.92i)10-s − 3.02i·11-s + (−1.95 + 0.437i)12-s + (0.363 + 0.363i)13-s + (4.34 − 2.38i)14-s + (−0.256 + 2.22i)15-s + (1.70 + 3.61i)16-s + (−2.36 + 2.36i)17-s + ⋯
L(s)  = 1  + (0.278 − 0.960i)2-s + (0.408 − 0.408i)3-s + (−0.844 − 0.535i)4-s + (−0.783 + 0.621i)5-s + (−0.278 − 0.505i)6-s + (0.936 + 0.936i)7-s + (−0.749 + 0.661i)8-s − 0.333i·9-s + (0.378 + 0.925i)10-s − 0.913i·11-s + (−0.563 + 0.126i)12-s + (0.100 + 0.100i)13-s + (1.16 − 0.638i)14-s + (−0.0663 + 0.573i)15-s + (0.426 + 0.904i)16-s + (−0.573 + 0.573i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.330 + 0.943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.330 + 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(60\)    =    \(2^{2} \cdot 3 \cdot 5\)
Sign: $0.330 + 0.943i$
Analytic conductor: \(0.479102\)
Root analytic conductor: \(0.692172\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{60} (43, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 60,\ (\ :1/2),\ 0.330 + 0.943i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.792001 - 0.561615i\)
\(L(\frac12)\) \(\approx\) \(0.792001 - 0.561615i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.394 + 1.35i)T \)
3 \( 1 + (-0.707 + 0.707i)T \)
5 \( 1 + (1.75 - 1.38i)T \)
good7 \( 1 + (-2.47 - 2.47i)T + 7iT^{2} \)
11 \( 1 + 3.02iT - 11T^{2} \)
13 \( 1 + (-0.363 - 0.363i)T + 13iT^{2} \)
17 \( 1 + (2.36 - 2.36i)T - 17iT^{2} \)
19 \( 1 + 4.95T + 19T^{2} \)
23 \( 1 + (0.900 - 0.900i)T - 23iT^{2} \)
29 \( 1 + 3.50iT - 29T^{2} \)
31 \( 1 + 3.85iT - 31T^{2} \)
37 \( 1 + (0.363 - 0.363i)T - 37iT^{2} \)
41 \( 1 - 2.72T + 41T^{2} \)
43 \( 1 + (-3.92 + 3.92i)T - 43iT^{2} \)
47 \( 1 + (-5.85 - 5.85i)T + 47iT^{2} \)
53 \( 1 + (-3.14 - 3.14i)T + 53iT^{2} \)
59 \( 1 - 8.68T + 59T^{2} \)
61 \( 1 + 15.2T + 61T^{2} \)
67 \( 1 + (3.92 + 3.92i)T + 67iT^{2} \)
71 \( 1 - 4.25iT - 71T^{2} \)
73 \( 1 + (-9.28 - 9.28i)T + 73iT^{2} \)
79 \( 1 - 0.399T + 79T^{2} \)
83 \( 1 + (0.199 - 0.199i)T - 83iT^{2} \)
89 \( 1 + 4.28iT - 89T^{2} \)
97 \( 1 + (-6.73 + 6.73i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.74341861826813309516692583027, −13.74840395062219573683379365608, −12.46900599999743916059175353573, −11.50594775644716363232487736596, −10.74649585344510716254481436925, −8.897687794369621347888782138137, −8.073896344998307621880360215356, −6.01914623310028412066079288851, −4.10845597245463350886600356084, −2.42227100475349896467561560502, 4.10820850581918588614915726140, 4.86935030706652868948885848305, 7.10037216449274047057385336481, 8.059719745717866554026791003454, 9.084434006859695675261731118522, 10.70336046015381301690921460705, 12.23285714176562024623902312620, 13.37490385790743472992871812497, 14.49378797098679069970408126560, 15.25500950041580789057019742191

Graph of the $Z$-function along the critical line