L(s) = 1 | + (0.394 − 1.35i)2-s + (0.707 − 0.707i)3-s + (−1.68 − 1.07i)4-s + (−1.75 + 1.38i)5-s + (−0.681 − 1.23i)6-s + (2.47 + 2.47i)7-s + (−2.11 + 1.87i)8-s − 1.00i·9-s + (1.19 + 2.92i)10-s − 3.02i·11-s + (−1.95 + 0.437i)12-s + (0.363 + 0.363i)13-s + (4.34 − 2.38i)14-s + (−0.256 + 2.22i)15-s + (1.70 + 3.61i)16-s + (−2.36 + 2.36i)17-s + ⋯ |
L(s) = 1 | + (0.278 − 0.960i)2-s + (0.408 − 0.408i)3-s + (−0.844 − 0.535i)4-s + (−0.783 + 0.621i)5-s + (−0.278 − 0.505i)6-s + (0.936 + 0.936i)7-s + (−0.749 + 0.661i)8-s − 0.333i·9-s + (0.378 + 0.925i)10-s − 0.913i·11-s + (−0.563 + 0.126i)12-s + (0.100 + 0.100i)13-s + (1.16 − 0.638i)14-s + (−0.0663 + 0.573i)15-s + (0.426 + 0.904i)16-s + (−0.573 + 0.573i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.330 + 0.943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.330 + 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.792001 - 0.561615i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.792001 - 0.561615i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.394 + 1.35i)T \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (1.75 - 1.38i)T \) |
good | 7 | \( 1 + (-2.47 - 2.47i)T + 7iT^{2} \) |
| 11 | \( 1 + 3.02iT - 11T^{2} \) |
| 13 | \( 1 + (-0.363 - 0.363i)T + 13iT^{2} \) |
| 17 | \( 1 + (2.36 - 2.36i)T - 17iT^{2} \) |
| 19 | \( 1 + 4.95T + 19T^{2} \) |
| 23 | \( 1 + (0.900 - 0.900i)T - 23iT^{2} \) |
| 29 | \( 1 + 3.50iT - 29T^{2} \) |
| 31 | \( 1 + 3.85iT - 31T^{2} \) |
| 37 | \( 1 + (0.363 - 0.363i)T - 37iT^{2} \) |
| 41 | \( 1 - 2.72T + 41T^{2} \) |
| 43 | \( 1 + (-3.92 + 3.92i)T - 43iT^{2} \) |
| 47 | \( 1 + (-5.85 - 5.85i)T + 47iT^{2} \) |
| 53 | \( 1 + (-3.14 - 3.14i)T + 53iT^{2} \) |
| 59 | \( 1 - 8.68T + 59T^{2} \) |
| 61 | \( 1 + 15.2T + 61T^{2} \) |
| 67 | \( 1 + (3.92 + 3.92i)T + 67iT^{2} \) |
| 71 | \( 1 - 4.25iT - 71T^{2} \) |
| 73 | \( 1 + (-9.28 - 9.28i)T + 73iT^{2} \) |
| 79 | \( 1 - 0.399T + 79T^{2} \) |
| 83 | \( 1 + (0.199 - 0.199i)T - 83iT^{2} \) |
| 89 | \( 1 + 4.28iT - 89T^{2} \) |
| 97 | \( 1 + (-6.73 + 6.73i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.74341861826813309516692583027, −13.74840395062219573683379365608, −12.46900599999743916059175353573, −11.50594775644716363232487736596, −10.74649585344510716254481436925, −8.897687794369621347888782138137, −8.073896344998307621880360215356, −6.01914623310028412066079288851, −4.10845597245463350886600356084, −2.42227100475349896467561560502,
4.10820850581918588614915726140, 4.86935030706652868948885848305, 7.10037216449274047057385336481, 8.059719745717866554026791003454, 9.084434006859695675261731118522, 10.70336046015381301690921460705, 12.23285714176562024623902312620, 13.37490385790743472992871812497, 14.49378797098679069970408126560, 15.25500950041580789057019742191