L(s) = 1 | + (−1.41 + 0.0912i)2-s + (−0.707 − 0.707i)3-s + (1.98 − 0.257i)4-s + (1.32 − 1.80i)5-s + (1.06 + 0.933i)6-s + (1.86 − 1.86i)7-s + (−2.77 + 0.544i)8-s + 1.00i·9-s + (−1.69 + 2.66i)10-s + 0.728i·11-s + (−1.58 − 1.22i)12-s + (−3.12 + 3.12i)13-s + (−2.46 + 2.80i)14-s + (−2.20 + 0.342i)15-s + (3.86 − 1.02i)16-s + (1.12 + 1.12i)17-s + ⋯ |
L(s) = 1 | + (−0.997 + 0.0645i)2-s + (−0.408 − 0.408i)3-s + (0.991 − 0.128i)4-s + (0.590 − 0.807i)5-s + (0.433 + 0.381i)6-s + (0.705 − 0.705i)7-s + (−0.981 + 0.192i)8-s + 0.333i·9-s + (−0.537 + 0.843i)10-s + 0.219i·11-s + (−0.457 − 0.352i)12-s + (−0.866 + 0.866i)13-s + (−0.658 + 0.749i)14-s + (−0.570 + 0.0885i)15-s + (0.966 − 0.255i)16-s + (0.272 + 0.272i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.742 + 0.669i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.742 + 0.669i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.553334 - 0.212756i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.553334 - 0.212756i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.41 - 0.0912i)T \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 + (-1.32 + 1.80i)T \) |
good | 7 | \( 1 + (-1.86 + 1.86i)T - 7iT^{2} \) |
| 11 | \( 1 - 0.728iT - 11T^{2} \) |
| 13 | \( 1 + (3.12 - 3.12i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1.12 - 1.12i)T + 17iT^{2} \) |
| 19 | \( 1 + 3.73T + 19T^{2} \) |
| 23 | \( 1 + (-5.83 - 5.83i)T + 23iT^{2} \) |
| 29 | \( 1 + 2.64iT - 29T^{2} \) |
| 31 | \( 1 - 6.01iT - 31T^{2} \) |
| 37 | \( 1 + (-3.12 - 3.12i)T + 37iT^{2} \) |
| 41 | \( 1 + 4.24T + 41T^{2} \) |
| 43 | \( 1 + (5.10 + 5.10i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.09 - 2.09i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.484 + 0.484i)T - 53iT^{2} \) |
| 59 | \( 1 + 4.92T + 59T^{2} \) |
| 61 | \( 1 - 2.31T + 61T^{2} \) |
| 67 | \( 1 + (-5.10 + 5.10i)T - 67iT^{2} \) |
| 71 | \( 1 + 13.1iT - 71T^{2} \) |
| 73 | \( 1 + (-3.96 + 3.96i)T - 73iT^{2} \) |
| 79 | \( 1 - 7.11T + 79T^{2} \) |
| 83 | \( 1 + (3.55 + 3.55i)T + 83iT^{2} \) |
| 89 | \( 1 + 1.03iT - 89T^{2} \) |
| 97 | \( 1 + (12.5 + 12.5i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.14139950590094773034654773369, −13.85607538287597096943185710776, −12.51889686939756867239089554308, −11.46157618837904673207840832693, −10.27664113391821455029778148176, −9.121596515668271958104885290191, −7.83933882858955501505071224003, −6.65568342474225312237821383992, −5.00239101024269964312071468942, −1.63912336428237542663196072666,
2.62726573415258421154532584130, 5.43689528568042674304442276403, 6.78861442324097595161681779551, 8.279486892703712789273985863842, 9.592237204499065363021444845433, 10.59496208992750199621730919392, 11.41324579748295637554493296223, 12.69957823024840685239536171254, 14.75710515582284237011383365522, 15.09425846566368733444020248830