L(s) = 1 | + (−1.41 + 0.0912i)2-s + (−0.707 − 0.707i)3-s + (1.98 − 0.257i)4-s + (1.32 − 1.80i)5-s + (1.06 + 0.933i)6-s + (1.86 − 1.86i)7-s + (−2.77 + 0.544i)8-s + 1.00i·9-s + (−1.69 + 2.66i)10-s + 0.728i·11-s + (−1.58 − 1.22i)12-s + (−3.12 + 3.12i)13-s + (−2.46 + 2.80i)14-s + (−2.20 + 0.342i)15-s + (3.86 − 1.02i)16-s + (1.12 + 1.12i)17-s + ⋯ |
L(s) = 1 | + (−0.997 + 0.0645i)2-s + (−0.408 − 0.408i)3-s + (0.991 − 0.128i)4-s + (0.590 − 0.807i)5-s + (0.433 + 0.381i)6-s + (0.705 − 0.705i)7-s + (−0.981 + 0.192i)8-s + 0.333i·9-s + (−0.537 + 0.843i)10-s + 0.219i·11-s + (−0.457 − 0.352i)12-s + (−0.866 + 0.866i)13-s + (−0.658 + 0.749i)14-s + (−0.570 + 0.0885i)15-s + (0.966 − 0.255i)16-s + (0.272 + 0.272i)17-s + ⋯ |
Λ(s)=(=(60s/2ΓC(s)L(s)(0.742+0.669i)Λ(2−s)
Λ(s)=(=(60s/2ΓC(s+1/2)L(s)(0.742+0.669i)Λ(1−s)
Degree: |
2 |
Conductor: |
60
= 22⋅3⋅5
|
Sign: |
0.742+0.669i
|
Analytic conductor: |
0.479102 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ60(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 60, ( :1/2), 0.742+0.669i)
|
Particular Values
L(1) |
≈ |
0.553334−0.212756i |
L(21) |
≈ |
0.553334−0.212756i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.41−0.0912i)T |
| 3 | 1+(0.707+0.707i)T |
| 5 | 1+(−1.32+1.80i)T |
good | 7 | 1+(−1.86+1.86i)T−7iT2 |
| 11 | 1−0.728iT−11T2 |
| 13 | 1+(3.12−3.12i)T−13iT2 |
| 17 | 1+(−1.12−1.12i)T+17iT2 |
| 19 | 1+3.73T+19T2 |
| 23 | 1+(−5.83−5.83i)T+23iT2 |
| 29 | 1+2.64iT−29T2 |
| 31 | 1−6.01iT−31T2 |
| 37 | 1+(−3.12−3.12i)T+37iT2 |
| 41 | 1+4.24T+41T2 |
| 43 | 1+(5.10+5.10i)T+43iT2 |
| 47 | 1+(2.09−2.09i)T−47iT2 |
| 53 | 1+(−0.484+0.484i)T−53iT2 |
| 59 | 1+4.92T+59T2 |
| 61 | 1−2.31T+61T2 |
| 67 | 1+(−5.10+5.10i)T−67iT2 |
| 71 | 1+13.1iT−71T2 |
| 73 | 1+(−3.96+3.96i)T−73iT2 |
| 79 | 1−7.11T+79T2 |
| 83 | 1+(3.55+3.55i)T+83iT2 |
| 89 | 1+1.03iT−89T2 |
| 97 | 1+(12.5+12.5i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.14139950590094773034654773369, −13.85607538287597096943185710776, −12.51889686939756867239089554308, −11.46157618837904673207840832693, −10.27664113391821455029778148176, −9.121596515668271958104885290191, −7.83933882858955501505071224003, −6.65568342474225312237821383992, −5.00239101024269964312071468942, −1.63912336428237542663196072666,
2.62726573415258421154532584130, 5.43689528568042674304442276403, 6.78861442324097595161681779551, 8.279486892703712789273985863842, 9.592237204499065363021444845433, 10.59496208992750199621730919392, 11.41324579748295637554493296223, 12.69957823024840685239536171254, 14.75710515582284237011383365522, 15.09425846566368733444020248830