L(s) = 1 | − 1.87·2-s − 1.77·3-s + 1.51·4-s + 5-s + 3.33·6-s + 4.25·7-s + 0.901·8-s + 0.159·9-s − 1.87·10-s − 2.70·12-s + 1.36·13-s − 7.98·14-s − 1.77·15-s − 4.73·16-s + 2.09·17-s − 0.299·18-s + 0.604·19-s + 1.51·20-s − 7.56·21-s − 4.39·23-s − 1.60·24-s + 25-s − 2.55·26-s + 5.04·27-s + 6.46·28-s − 6.63·29-s + 3.33·30-s + ⋯ |
L(s) = 1 | − 1.32·2-s − 1.02·3-s + 0.759·4-s + 0.447·5-s + 1.36·6-s + 1.60·7-s + 0.318·8-s + 0.0531·9-s − 0.593·10-s − 0.779·12-s + 0.377·13-s − 2.13·14-s − 0.458·15-s − 1.18·16-s + 0.508·17-s − 0.0705·18-s + 0.138·19-s + 0.339·20-s − 1.65·21-s − 0.916·23-s − 0.327·24-s + 0.200·25-s − 0.500·26-s + 0.971·27-s + 1.22·28-s − 1.23·29-s + 0.608·30-s + ⋯ |
Λ(s)=(=(605s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(605s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6447420072 |
L(21) |
≈ |
0.6447420072 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−T |
| 11 | 1 |
good | 2 | 1+1.87T+2T2 |
| 3 | 1+1.77T+3T2 |
| 7 | 1−4.25T+7T2 |
| 13 | 1−1.36T+13T2 |
| 17 | 1−2.09T+17T2 |
| 19 | 1−0.604T+19T2 |
| 23 | 1+4.39T+23T2 |
| 29 | 1+6.63T+29T2 |
| 31 | 1+2.19T+31T2 |
| 37 | 1−6.16T+37T2 |
| 41 | 1−7.40T+41T2 |
| 43 | 1−12.6T+43T2 |
| 47 | 1+3.07T+47T2 |
| 53 | 1+6.65T+53T2 |
| 59 | 1−12.0T+59T2 |
| 61 | 1+5.68T+61T2 |
| 67 | 1−9.86T+67T2 |
| 71 | 1+5.23T+71T2 |
| 73 | 1+0.722T+73T2 |
| 79 | 1−5.67T+79T2 |
| 83 | 1+0.952T+83T2 |
| 89 | 1−1.24T+89T2 |
| 97 | 1−11.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.81923980747304794773415624293, −9.789450759579999885227731640820, −8.941778165051189525738264100272, −8.030009234004533529306819749843, −7.44807360774094599999828725945, −6.10107983838590632936608903311, −5.33322061232929930404373761811, −4.30527704672202159909961329509, −2.08303021296616042965844033710, −0.948431305586601174813472817241,
0.948431305586601174813472817241, 2.08303021296616042965844033710, 4.30527704672202159909961329509, 5.33322061232929930404373761811, 6.10107983838590632936608903311, 7.44807360774094599999828725945, 8.030009234004533529306819749843, 8.941778165051189525738264100272, 9.789450759579999885227731640820, 10.81923980747304794773415624293