Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [605,2,Mod(1,605)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(605, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("605.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 605.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 4.4.2525.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 55) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.87603 | −1.77748 | 1.51949 | 1.00000 | 3.33461 | 4.25800 | 0.901454 | 0.159450 | −1.87603 | ||||||||||||||||||||||||||||||
1.2 | 0.0935099 | 1.46673 | −1.99126 | 1.00000 | 0.137154 | 4.52452 | −0.373222 | −0.848698 | 0.0935099 | |||||||||||||||||||||||||||||||
1.3 | 2.25800 | 0.777484 | 3.09855 | 1.00000 | 1.75556 | 0.123970 | 2.48051 | −2.39552 | 2.25800 | |||||||||||||||||||||||||||||||
1.4 | 2.52452 | −2.46673 | 4.37322 | 1.00000 | −6.22732 | 2.09351 | 5.99126 | 3.08477 | 2.52452 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 605.2.a.l | 4 | |
3.b | odd | 2 | 1 | 5445.2.a.bg | 4 | ||
4.b | odd | 2 | 1 | 9680.2.a.cs | 4 | ||
5.b | even | 2 | 1 | 3025.2.a.v | 4 | ||
11.b | odd | 2 | 1 | 605.2.a.i | 4 | ||
11.c | even | 5 | 2 | 55.2.g.a | ✓ | 8 | |
11.c | even | 5 | 2 | 605.2.g.j | 8 | ||
11.d | odd | 10 | 2 | 605.2.g.g | 8 | ||
11.d | odd | 10 | 2 | 605.2.g.n | 8 | ||
33.d | even | 2 | 1 | 5445.2.a.bu | 4 | ||
33.h | odd | 10 | 2 | 495.2.n.f | 8 | ||
44.c | even | 2 | 1 | 9680.2.a.cv | 4 | ||
44.h | odd | 10 | 2 | 880.2.bo.e | 8 | ||
55.d | odd | 2 | 1 | 3025.2.a.be | 4 | ||
55.j | even | 10 | 2 | 275.2.h.b | 8 | ||
55.k | odd | 20 | 4 | 275.2.z.b | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
55.2.g.a | ✓ | 8 | 11.c | even | 5 | 2 | |
275.2.h.b | 8 | 55.j | even | 10 | 2 | ||
275.2.z.b | 16 | 55.k | odd | 20 | 4 | ||
495.2.n.f | 8 | 33.h | odd | 10 | 2 | ||
605.2.a.i | 4 | 11.b | odd | 2 | 1 | ||
605.2.a.l | 4 | 1.a | even | 1 | 1 | trivial | |
605.2.g.g | 8 | 11.d | odd | 10 | 2 | ||
605.2.g.j | 8 | 11.c | even | 5 | 2 | ||
605.2.g.n | 8 | 11.d | odd | 10 | 2 | ||
880.2.bo.e | 8 | 44.h | odd | 10 | 2 | ||
3025.2.a.v | 4 | 5.b | even | 2 | 1 | ||
3025.2.a.be | 4 | 55.d | odd | 2 | 1 | ||
5445.2.a.bg | 4 | 3.b | odd | 2 | 1 | ||
5445.2.a.bu | 4 | 33.d | even | 2 | 1 | ||
9680.2.a.cs | 4 | 4.b | odd | 2 | 1 | ||
9680.2.a.cv | 4 | 44.c | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|