Properties

Label 605.2.a.l
Level $605$
Weight $2$
Character orbit 605.a
Self dual yes
Analytic conductor $4.831$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.2525.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 5x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + \beta_{2} + 1) q^{2} + (\beta_1 - 1) q^{3} + ( - \beta_{3} - \beta_1 + 2) q^{4} + q^{5} + (\beta_{3} - 3 \beta_{2} + \beta_1 - 2) q^{6} + (\beta_{3} + 3) q^{7} + ( - \beta_{3} + \beta_{2} - \beta_1 + 3) q^{8} + (\beta_{2} - \beta_1 + 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{3} + \beta_{2} + 1) q^{2} + (\beta_1 - 1) q^{3} + ( - \beta_{3} - \beta_1 + 2) q^{4} + q^{5} + (\beta_{3} - 3 \beta_{2} + \beta_1 - 2) q^{6} + (\beta_{3} + 3) q^{7} + ( - \beta_{3} + \beta_{2} - \beta_1 + 3) q^{8} + (\beta_{2} - \beta_1 + 1) q^{9} + ( - \beta_{3} + \beta_{2} + 1) q^{10} + ( - 3 \beta_{2} + 2 \beta_1 - 6) q^{12} + ( - \beta_{3} - \beta_{2} + 1) q^{13} + ( - 2 \beta_{3} + 4 \beta_{2} + 1) q^{14} + (\beta_1 - 1) q^{15} + ( - \beta_{3} + 4 \beta_{2} + 3) q^{16} + (\beta_{3} - \beta_{2} + \beta_1) q^{17} + (3 \beta_{2} - 2 \beta_1 + 3) q^{18} + (\beta_{2} + \beta_1 + 3) q^{19} + ( - \beta_{3} - \beta_1 + 2) q^{20} + (2 \beta_{2} + 3 \beta_1 - 2) q^{21} + ( - \beta_{3} + 4 \beta_{2} - 3 \beta_1 + 1) q^{23} + (\beta_{3} - 4 \beta_{2} + 3 \beta_1 - 7) q^{24} + q^{25} + ( - 3 \beta_{3} + \beta_1 + 2) q^{26} + (\beta_{3} - 2 \beta_{2} - 2 \beta_1 - 1) q^{27} + ( - \beta_{3} - \beta_{2} - 4 \beta_1 + 3) q^{28} + (3 \beta_{2} + \beta_1 - 1) q^{29} + (\beta_{3} - 3 \beta_{2} + \beta_1 - 2) q^{30} + ( - \beta_{3} - \beta_{2} + 2 \beta_1 - 1) q^{31} + (2 \beta_{3} - 2 \beta_1 + 3) q^{32} + ( - \beta_{2} + 2 \beta_1 - 4) q^{34} + (\beta_{3} + 3) q^{35} + (5 \beta_{2} - 3 \beta_1 + 6) q^{36} + (3 \beta_{3} - \beta_{2} - \beta_1) q^{37} + ( - 2 \beta_{3} + \beta_{2} + 3) q^{38} + ( - \beta_{3} - \beta_{2} + \beta_1 - 2) q^{39} + ( - \beta_{3} + \beta_{2} - \beta_1 + 3) q^{40} + (3 \beta_{3} - 3 \beta_{2} - \beta_1 - 2) q^{41} + (4 \beta_{3} - 8 \beta_{2} + \beta_1 - 3) q^{42} + (\beta_{3} - 3 \beta_{2} - 2 \beta_1 + 5) q^{43} + (\beta_{2} - \beta_1 + 1) q^{45} + (2 \beta_{3} + 6 \beta_{2} - 7 \beta_1 + 10) q^{46} + (\beta_{3} + 3 \beta_1 - 2) q^{47} + (4 \beta_{3} - 6 \beta_{2} + 3 \beta_1 - 4) q^{48} + (5 \beta_{3} - \beta_{2} + \beta_1 + 4) q^{49} + ( - \beta_{3} + \beta_{2} + 1) q^{50} + ( - \beta_{3} + 4 \beta_{2} + 4) q^{51} + ( - 3 \beta_{3} - \beta_{2} + \beta_1 + 5) q^{52} + ( - \beta_{3} + \beta_{2} + \beta_1 - 3) q^{53} + (4 \beta_{2} - 3) q^{54} + ( - \beta_{3} + 2 \beta_{2} - 3 \beta_1 + 6) q^{56} + (\beta_{3} + 3 \beta_1) q^{57} + (4 \beta_{3} - 3 \beta_{2} - 2 \beta_1 + 1) q^{58} + (3 \beta_{3} - 6 \beta_{2} - 2 \beta_1 - 3) q^{59} + ( - 3 \beta_{2} + 2 \beta_1 - 6) q^{60} + ( - 2 \beta_{3} + \beta_{2} + 2 \beta_1) q^{61} + ( - \beta_{3} - 6 \beta_{2} + 3 \beta_1 - 2) q^{62} + ( - \beta_{3} + \beta_{2} - 2 \beta_1 + 2) q^{63} + (\beta_{3} + \beta_{2} - 2 \beta_1 - 5) q^{64} + ( - \beta_{3} - \beta_{2} + 1) q^{65} + (3 \beta_{3} - 5 \beta_{2} - 2) q^{67} + (\beta_{3} - 6 \beta_{2} + \beta_1 - 7) q^{68} + (4 \beta_{3} - 9 \beta_{2} + \beta_1 - 11) q^{69} + ( - 2 \beta_{3} + 4 \beta_{2} + 1) q^{70} + ( - 3 \beta_{3} - 5 \beta_{2} + \cdots - 8) q^{71}+ \cdots + (7 \beta_{2} + 2 \beta_1 - 8) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} - 2 q^{3} + 7 q^{4} + 4 q^{5} - q^{6} + 11 q^{7} + 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 3 q^{2} - 2 q^{3} + 7 q^{4} + 4 q^{5} - q^{6} + 11 q^{7} + 9 q^{8} + 3 q^{10} - 14 q^{12} + 7 q^{13} - 2 q^{14} - 2 q^{15} + 5 q^{16} + 3 q^{17} + 2 q^{18} + 12 q^{19} + 7 q^{20} - 6 q^{21} - 9 q^{23} - 15 q^{24} + 4 q^{25} + 13 q^{26} - 5 q^{27} + 7 q^{28} - 8 q^{29} - q^{30} + 3 q^{31} + 6 q^{32} - 10 q^{34} + 11 q^{35} + 8 q^{36} - 3 q^{37} + 12 q^{38} - 3 q^{39} + 9 q^{40} - 7 q^{41} + 2 q^{42} + 21 q^{43} + 12 q^{46} - 3 q^{47} - 2 q^{48} + 15 q^{49} + 3 q^{50} + 9 q^{51} + 27 q^{52} - 11 q^{53} - 20 q^{54} + 15 q^{56} + 5 q^{57} + 2 q^{58} - 7 q^{59} - 14 q^{60} + 4 q^{61} + 11 q^{62} + 3 q^{63} - 27 q^{64} + 7 q^{65} - q^{67} - 15 q^{68} - 28 q^{69} - 2 q^{70} - 15 q^{71} + 13 q^{72} - 9 q^{73} - 36 q^{74} - 2 q^{75} + 8 q^{76} + 6 q^{78} + 6 q^{79} + 5 q^{80} - 20 q^{81} - 44 q^{82} + 15 q^{83} - 47 q^{84} + 3 q^{85} - 3 q^{86} + 15 q^{87} + 2 q^{90} + 4 q^{91} + 18 q^{92} + 21 q^{93} - 11 q^{94} + 12 q^{95} - 26 q^{96} + 6 q^{97} - 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 4x^{2} + 5x + 5 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 4\beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.777484
2.46673
1.77748
−1.46673
−1.87603 −1.77748 1.51949 1.00000 3.33461 4.25800 0.901454 0.159450 −1.87603
1.2 0.0935099 1.46673 −1.99126 1.00000 0.137154 4.52452 −0.373222 −0.848698 0.0935099
1.3 2.25800 0.777484 3.09855 1.00000 1.75556 0.123970 2.48051 −2.39552 2.25800
1.4 2.52452 −2.46673 4.37322 1.00000 −6.22732 2.09351 5.99126 3.08477 2.52452
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 605.2.a.l 4
3.b odd 2 1 5445.2.a.bg 4
4.b odd 2 1 9680.2.a.cs 4
5.b even 2 1 3025.2.a.v 4
11.b odd 2 1 605.2.a.i 4
11.c even 5 2 55.2.g.a 8
11.c even 5 2 605.2.g.j 8
11.d odd 10 2 605.2.g.g 8
11.d odd 10 2 605.2.g.n 8
33.d even 2 1 5445.2.a.bu 4
33.h odd 10 2 495.2.n.f 8
44.c even 2 1 9680.2.a.cv 4
44.h odd 10 2 880.2.bo.e 8
55.d odd 2 1 3025.2.a.be 4
55.j even 10 2 275.2.h.b 8
55.k odd 20 4 275.2.z.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.g.a 8 11.c even 5 2
275.2.h.b 8 55.j even 10 2
275.2.z.b 16 55.k odd 20 4
495.2.n.f 8 33.h odd 10 2
605.2.a.i 4 11.b odd 2 1
605.2.a.l 4 1.a even 1 1 trivial
605.2.g.g 8 11.d odd 10 2
605.2.g.j 8 11.c even 5 2
605.2.g.n 8 11.d odd 10 2
880.2.bo.e 8 44.h odd 10 2
3025.2.a.v 4 5.b even 2 1
3025.2.a.be 4 55.d odd 2 1
5445.2.a.bg 4 3.b odd 2 1
5445.2.a.bu 4 33.d even 2 1
9680.2.a.cs 4 4.b odd 2 1
9680.2.a.cv 4 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(605))\):

\( T_{2}^{4} - 3T_{2}^{3} - 3T_{2}^{2} + 11T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{4} + 2T_{3}^{3} - 4T_{3}^{2} - 5T_{3} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 3 T^{3} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 11 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 7 T^{3} + \cdots - 11 \) Copy content Toggle raw display
$17$ \( T^{4} - 3 T^{3} + \cdots - 11 \) Copy content Toggle raw display
$19$ \( T^{4} - 12 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$23$ \( T^{4} + 9 T^{3} + \cdots - 1669 \) Copy content Toggle raw display
$29$ \( T^{4} + 8 T^{3} + \cdots - 55 \) Copy content Toggle raw display
$31$ \( T^{4} - 3 T^{3} + \cdots + 101 \) Copy content Toggle raw display
$37$ \( T^{4} + 3 T^{3} + \cdots + 151 \) Copy content Toggle raw display
$41$ \( T^{4} + 7 T^{3} + \cdots - 499 \) Copy content Toggle raw display
$43$ \( T^{4} - 21 T^{3} + \cdots - 59 \) Copy content Toggle raw display
$47$ \( T^{4} + 3 T^{3} + \cdots + 71 \) Copy content Toggle raw display
$53$ \( T^{4} + 11 T^{3} + \cdots - 1 \) Copy content Toggle raw display
$59$ \( T^{4} + 7 T^{3} + \cdots - 3025 \) Copy content Toggle raw display
$61$ \( T^{4} - 4 T^{3} + \cdots + 55 \) Copy content Toggle raw display
$67$ \( T^{4} + T^{3} + \cdots - 101 \) Copy content Toggle raw display
$71$ \( T^{4} + 15 T^{3} + \cdots - 7799 \) Copy content Toggle raw display
$73$ \( T^{4} + 9 T^{3} + \cdots - 389 \) Copy content Toggle raw display
$79$ \( T^{4} - 6 T^{3} + \cdots - 2155 \) Copy content Toggle raw display
$83$ \( T^{4} - 15 T^{3} + \cdots - 29 \) Copy content Toggle raw display
$89$ \( T^{4} - 150 T^{2} + \cdots + 725 \) Copy content Toggle raw display
$97$ \( T^{4} - 6 T^{3} + \cdots - 25 \) Copy content Toggle raw display
show more
show less