Properties

Label 605.2.a.l
Level 605605
Weight 22
Character orbit 605.a
Self dual yes
Analytic conductor 4.8314.831
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 605=5112 605 = 5 \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 4.830949322294.83094932229
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.2525.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x34x2+5x+5 x^{4} - 2x^{3} - 4x^{2} + 5x + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 55)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3+β2+1)q2+(β11)q3+(β3β1+2)q4+q5+(β33β2+β12)q6+(β3+3)q7+(β3+β2β1+3)q8++(7β2+2β18)q98+O(q100) q + ( - \beta_{3} + \beta_{2} + 1) q^{2} + (\beta_1 - 1) q^{3} + ( - \beta_{3} - \beta_1 + 2) q^{4} + q^{5} + (\beta_{3} - 3 \beta_{2} + \beta_1 - 2) q^{6} + (\beta_{3} + 3) q^{7} + ( - \beta_{3} + \beta_{2} - \beta_1 + 3) q^{8}+ \cdots + (7 \beta_{2} + 2 \beta_1 - 8) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+3q22q3+7q4+4q5q6+11q7+9q8+3q1014q12+7q132q142q15+5q16+3q17+2q18+12q19+7q206q219q23+42q98+O(q100) 4 q + 3 q^{2} - 2 q^{3} + 7 q^{4} + 4 q^{5} - q^{6} + 11 q^{7} + 9 q^{8} + 3 q^{10} - 14 q^{12} + 7 q^{13} - 2 q^{14} - 2 q^{15} + 5 q^{16} + 3 q^{17} + 2 q^{18} + 12 q^{19} + 7 q^{20} - 6 q^{21} - 9 q^{23}+ \cdots - 42 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x34x2+5x+5 x^{4} - 2x^{3} - 4x^{2} + 5x + 5 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν3 \nu^{2} - \nu - 3 Copy content Toggle raw display
β3\beta_{3}== ν3ν23ν \nu^{3} - \nu^{2} - 3\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+3 \beta_{2} + \beta _1 + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+4β1+3 \beta_{3} + \beta_{2} + 4\beta _1 + 3 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−0.777484
2.46673
1.77748
−1.46673
−1.87603 −1.77748 1.51949 1.00000 3.33461 4.25800 0.901454 0.159450 −1.87603
1.2 0.0935099 1.46673 −1.99126 1.00000 0.137154 4.52452 −0.373222 −0.848698 0.0935099
1.3 2.25800 0.777484 3.09855 1.00000 1.75556 0.123970 2.48051 −2.39552 2.25800
1.4 2.52452 −2.46673 4.37322 1.00000 −6.22732 2.09351 5.99126 3.08477 2.52452
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
1111 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 605.2.a.l 4
3.b odd 2 1 5445.2.a.bg 4
4.b odd 2 1 9680.2.a.cs 4
5.b even 2 1 3025.2.a.v 4
11.b odd 2 1 605.2.a.i 4
11.c even 5 2 55.2.g.a 8
11.c even 5 2 605.2.g.j 8
11.d odd 10 2 605.2.g.g 8
11.d odd 10 2 605.2.g.n 8
33.d even 2 1 5445.2.a.bu 4
33.h odd 10 2 495.2.n.f 8
44.c even 2 1 9680.2.a.cv 4
44.h odd 10 2 880.2.bo.e 8
55.d odd 2 1 3025.2.a.be 4
55.j even 10 2 275.2.h.b 8
55.k odd 20 4 275.2.z.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.g.a 8 11.c even 5 2
275.2.h.b 8 55.j even 10 2
275.2.z.b 16 55.k odd 20 4
495.2.n.f 8 33.h odd 10 2
605.2.a.i 4 11.b odd 2 1
605.2.a.l 4 1.a even 1 1 trivial
605.2.g.g 8 11.d odd 10 2
605.2.g.j 8 11.c even 5 2
605.2.g.n 8 11.d odd 10 2
880.2.bo.e 8 44.h odd 10 2
3025.2.a.v 4 5.b even 2 1
3025.2.a.be 4 55.d odd 2 1
5445.2.a.bg 4 3.b odd 2 1
5445.2.a.bu 4 33.d even 2 1
9680.2.a.cs 4 4.b odd 2 1
9680.2.a.cv 4 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(605))S_{2}^{\mathrm{new}}(\Gamma_0(605)):

T243T233T22+11T21 T_{2}^{4} - 3T_{2}^{3} - 3T_{2}^{2} + 11T_{2} - 1 Copy content Toggle raw display
T34+2T334T325T3+5 T_{3}^{4} + 2T_{3}^{3} - 4T_{3}^{2} - 5T_{3} + 5 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T43T3+1 T^{4} - 3 T^{3} + \cdots - 1 Copy content Toggle raw display
33 T4+2T3++5 T^{4} + 2 T^{3} + \cdots + 5 Copy content Toggle raw display
55 (T1)4 (T - 1)^{4} Copy content Toggle raw display
77 T411T3++5 T^{4} - 11 T^{3} + \cdots + 5 Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T47T3+11 T^{4} - 7 T^{3} + \cdots - 11 Copy content Toggle raw display
1717 T43T3+11 T^{4} - 3 T^{3} + \cdots - 11 Copy content Toggle raw display
1919 T412T3++25 T^{4} - 12 T^{3} + \cdots + 25 Copy content Toggle raw display
2323 T4+9T3+1669 T^{4} + 9 T^{3} + \cdots - 1669 Copy content Toggle raw display
2929 T4+8T3+55 T^{4} + 8 T^{3} + \cdots - 55 Copy content Toggle raw display
3131 T43T3++101 T^{4} - 3 T^{3} + \cdots + 101 Copy content Toggle raw display
3737 T4+3T3++151 T^{4} + 3 T^{3} + \cdots + 151 Copy content Toggle raw display
4141 T4+7T3+499 T^{4} + 7 T^{3} + \cdots - 499 Copy content Toggle raw display
4343 T421T3+59 T^{4} - 21 T^{3} + \cdots - 59 Copy content Toggle raw display
4747 T4+3T3++71 T^{4} + 3 T^{3} + \cdots + 71 Copy content Toggle raw display
5353 T4+11T3+1 T^{4} + 11 T^{3} + \cdots - 1 Copy content Toggle raw display
5959 T4+7T3+3025 T^{4} + 7 T^{3} + \cdots - 3025 Copy content Toggle raw display
6161 T44T3++55 T^{4} - 4 T^{3} + \cdots + 55 Copy content Toggle raw display
6767 T4+T3+101 T^{4} + T^{3} + \cdots - 101 Copy content Toggle raw display
7171 T4+15T3+7799 T^{4} + 15 T^{3} + \cdots - 7799 Copy content Toggle raw display
7373 T4+9T3+389 T^{4} + 9 T^{3} + \cdots - 389 Copy content Toggle raw display
7979 T46T3+2155 T^{4} - 6 T^{3} + \cdots - 2155 Copy content Toggle raw display
8383 T415T3+29 T^{4} - 15 T^{3} + \cdots - 29 Copy content Toggle raw display
8989 T4150T2++725 T^{4} - 150 T^{2} + \cdots + 725 Copy content Toggle raw display
9797 T46T3+25 T^{4} - 6 T^{3} + \cdots - 25 Copy content Toggle raw display
show more
show less