Properties

Label 880.2.bo.e
Level $880$
Weight $2$
Character orbit 880.bo
Analytic conductor $7.027$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(81,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bo (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.159390625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} - 11x^{5} + 21x^{4} - 5x^{3} + 10x^{2} + 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} - \beta_{6} q^{5} + ( - 2 \beta_{6} + \beta_{5} - 3 \beta_{3} + \cdots + 2) q^{7}+ \cdots + ( - \beta_{7} - \beta_{6} + \cdots + \beta_1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{3} - \beta_{6} q^{5} + ( - 2 \beta_{6} + \beta_{5} - 3 \beta_{3} + \cdots + 2) q^{7}+ \cdots + ( - 5 \beta_{6} - 3 \beta_{5} + \cdots + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} - 2 q^{5} + 3 q^{7} - 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - q^{3} - 2 q^{5} + 3 q^{7} - 5 q^{9} + 5 q^{11} + 4 q^{13} - q^{15} + q^{17} + q^{19} - 12 q^{21} + 18 q^{23} - 2 q^{25} - 10 q^{27} + 19 q^{29} - 6 q^{31} - 19 q^{33} + 8 q^{35} + 4 q^{37} - 9 q^{39} - 4 q^{41} - 42 q^{43} - 4 q^{47} - 15 q^{49} - 13 q^{51} + 3 q^{53} - 5 q^{55} - 5 q^{57} + 19 q^{59} - 2 q^{61} - q^{63} + 14 q^{65} + 2 q^{67} - 21 q^{69} - 40 q^{71} - 23 q^{73} - q^{75} - 28 q^{77} - 17 q^{79} + 25 q^{83} - 4 q^{85} - 30 q^{87} + 12 q^{91} - 13 q^{93} + q^{95} + 12 q^{97} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} + 6x^{6} - 11x^{5} + 21x^{4} - 5x^{3} + 10x^{2} + 25x + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 555\nu^{7} - 2159\nu^{6} + 7489\nu^{5} - 18164\nu^{4} + 40069\nu^{3} - 84434\nu^{2} + 43855\nu + 375 ) / 94655 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -970\nu^{7} - 1002\nu^{6} - 6608\nu^{5} + 9063\nu^{4} - 14943\nu^{3} + 27673\nu^{2} - 68120\nu + 35160 ) / 94655 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -1604\nu^{7} + 4159\nu^{6} - 12059\nu^{5} + 28414\nu^{4} - 81659\nu^{3} + 38305\nu^{2} - 13500\nu - 13875 ) / 94655 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -2052\nu^{7} + 2252\nu^{6} - 19912\nu^{5} + 21007\nu^{4} - 82042\nu^{3} + 35785\nu^{2} - 19395\nu - 90925 ) / 94655 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -2667\nu^{7} + 6691\nu^{6} - 17466\nu^{5} + 50856\nu^{4} - 82441\nu^{3} + 72554\nu^{2} - 4035\nu - 12035 ) / 94655 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 4024\nu^{7} - 1464\nu^{6} + 21519\nu^{5} - 26434\nu^{4} + 59219\nu^{3} + 22635\nu^{2} + 54640\nu + 66675 ) / 94655 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{7} - \beta_{6} - \beta_{5} - \beta_{3} - 3\beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{6} + \beta_{5} - 4\beta_{4} - \beta_{3} - \beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7\beta_{7} + 7\beta_{6} + 2\beta_{5} + 13\beta_{3} + 13\beta_{2} - 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -8\beta_{7} - 11\beta_{6} - 20\beta_{5} + 20\beta_{4} - 11\beta_{2} + 8\beta _1 - 12 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -19\beta_{7} - 19\beta_{4} - 68\beta_{3} - 36\beta_{2} - 24\beta _1 + 36 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 111\beta_{7} + 81\beta_{6} + 111\beta_{5} - 55\beta_{4} + 81\beta_{3} + 148\beta_{2} - 56\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(-1 + \beta_{2} + \beta_{3} + \beta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
81.1
0.453245 1.39494i
−0.762262 + 2.34600i
1.43801 + 1.04478i
−0.628998 0.456994i
0.453245 + 1.39494i
−0.762262 2.34600i
1.43801 1.04478i
−0.628998 + 0.456994i
0 −0.453245 + 1.39494i 0 −0.809017 + 0.587785i 0 −1.39815 4.30308i 0 0.686611 + 0.498852i 0
81.2 0 0.762262 2.34600i 0 −0.809017 + 0.587785i 0 −0.646930 1.99105i 0 −2.49563 1.81318i 0
401.1 0 −1.43801 1.04478i 0 0.309017 0.951057i 0 3.44479 2.50279i 0 0.0492728 + 0.151646i 0
401.2 0 0.628998 + 0.456994i 0 0.309017 0.951057i 0 0.100294 0.0728678i 0 −0.740256 2.27827i 0
641.1 0 −0.453245 1.39494i 0 −0.809017 0.587785i 0 −1.39815 + 4.30308i 0 0.686611 0.498852i 0
641.2 0 0.762262 + 2.34600i 0 −0.809017 0.587785i 0 −0.646930 + 1.99105i 0 −2.49563 + 1.81318i 0
801.1 0 −1.43801 + 1.04478i 0 0.309017 + 0.951057i 0 3.44479 + 2.50279i 0 0.0492728 0.151646i 0
801.2 0 0.628998 0.456994i 0 0.309017 + 0.951057i 0 0.100294 + 0.0728678i 0 −0.740256 + 2.27827i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 81.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 880.2.bo.e 8
4.b odd 2 1 55.2.g.a 8
11.c even 5 1 inner 880.2.bo.e 8
11.c even 5 1 9680.2.a.cs 4
11.d odd 10 1 9680.2.a.cv 4
12.b even 2 1 495.2.n.f 8
20.d odd 2 1 275.2.h.b 8
20.e even 4 2 275.2.z.b 16
44.c even 2 1 605.2.g.n 8
44.g even 10 1 605.2.a.i 4
44.g even 10 2 605.2.g.g 8
44.g even 10 1 605.2.g.n 8
44.h odd 10 1 55.2.g.a 8
44.h odd 10 1 605.2.a.l 4
44.h odd 10 2 605.2.g.j 8
132.n odd 10 1 5445.2.a.bu 4
132.o even 10 1 495.2.n.f 8
132.o even 10 1 5445.2.a.bg 4
220.n odd 10 1 275.2.h.b 8
220.n odd 10 1 3025.2.a.v 4
220.o even 10 1 3025.2.a.be 4
220.v even 20 2 275.2.z.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.g.a 8 4.b odd 2 1
55.2.g.a 8 44.h odd 10 1
275.2.h.b 8 20.d odd 2 1
275.2.h.b 8 220.n odd 10 1
275.2.z.b 16 20.e even 4 2
275.2.z.b 16 220.v even 20 2
495.2.n.f 8 12.b even 2 1
495.2.n.f 8 132.o even 10 1
605.2.a.i 4 44.g even 10 1
605.2.a.l 4 44.h odd 10 1
605.2.g.g 8 44.g even 10 2
605.2.g.j 8 44.h odd 10 2
605.2.g.n 8 44.c even 2 1
605.2.g.n 8 44.g even 10 1
880.2.bo.e 8 1.a even 1 1 trivial
880.2.bo.e 8 11.c even 5 1 inner
3025.2.a.v 4 220.n odd 10 1
3025.2.a.be 4 220.o even 10 1
5445.2.a.bg 4 132.o even 10 1
5445.2.a.bu 4 132.n odd 10 1
9680.2.a.cs 4 11.c even 5 1
9680.2.a.cv 4 11.d odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + T_{3}^{7} + 6T_{3}^{6} + 11T_{3}^{5} + 21T_{3}^{4} + 5T_{3}^{3} + 10T_{3}^{2} - 25T_{3} + 25 \) acting on \(S_{2}^{\mathrm{new}}(880, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + T^{7} + \cdots + 25 \) Copy content Toggle raw display
$5$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} - 3 T^{7} + \cdots + 25 \) Copy content Toggle raw display
$11$ \( T^{8} - 5 T^{7} + \cdots + 14641 \) Copy content Toggle raw display
$13$ \( T^{8} - 4 T^{7} + \cdots + 121 \) Copy content Toggle raw display
$17$ \( T^{8} - T^{7} + \cdots + 121 \) Copy content Toggle raw display
$19$ \( T^{8} - T^{7} + \cdots + 625 \) Copy content Toggle raw display
$23$ \( (T^{4} - 9 T^{3} + \cdots - 1669)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} - 19 T^{7} + \cdots + 3025 \) Copy content Toggle raw display
$31$ \( T^{8} + 6 T^{7} + \cdots + 10201 \) Copy content Toggle raw display
$37$ \( T^{8} - 4 T^{7} + \cdots + 22801 \) Copy content Toggle raw display
$41$ \( T^{8} + 4 T^{7} + \cdots + 249001 \) Copy content Toggle raw display
$43$ \( (T^{4} + 21 T^{3} + \cdots - 59)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 4 T^{7} + \cdots + 5041 \) Copy content Toggle raw display
$53$ \( T^{8} - 3 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{8} - 19 T^{7} + \cdots + 9150625 \) Copy content Toggle raw display
$61$ \( T^{8} + 2 T^{7} + \cdots + 3025 \) Copy content Toggle raw display
$67$ \( (T^{4} - T^{3} - 82 T^{2} + \cdots - 101)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + 40 T^{7} + \cdots + 60824401 \) Copy content Toggle raw display
$73$ \( T^{8} + 23 T^{7} + \cdots + 151321 \) Copy content Toggle raw display
$79$ \( T^{8} + 17 T^{7} + \cdots + 4644025 \) Copy content Toggle raw display
$83$ \( T^{8} - 25 T^{7} + \cdots + 841 \) Copy content Toggle raw display
$89$ \( (T^{4} - 150 T^{2} + \cdots + 725)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} - 12 T^{7} + \cdots + 625 \) Copy content Toggle raw display
show more
show less