Properties

Label 2-6128-1.1-c1-0-15
Degree $2$
Conductor $6128$
Sign $1$
Analytic cond. $48.9323$
Root an. cond. $6.99516$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.01·3-s − 1.13·5-s − 4.18·7-s − 1.96·9-s − 2.25·11-s − 5.91·13-s − 1.15·15-s − 1.01·17-s + 2.69·19-s − 4.25·21-s + 3.02·23-s − 3.70·25-s − 5.04·27-s + 1.59·29-s − 9.38·31-s − 2.29·33-s + 4.75·35-s − 9.18·37-s − 6.01·39-s + 10.8·41-s + 4.68·43-s + 2.23·45-s + 5.29·47-s + 10.4·49-s − 1.02·51-s − 2.86·53-s + 2.56·55-s + ⋯
L(s)  = 1  + 0.586·3-s − 0.508·5-s − 1.58·7-s − 0.655·9-s − 0.680·11-s − 1.64·13-s − 0.298·15-s − 0.245·17-s + 0.617·19-s − 0.927·21-s + 0.631·23-s − 0.741·25-s − 0.971·27-s + 0.295·29-s − 1.68·31-s − 0.399·33-s + 0.803·35-s − 1.50·37-s − 0.962·39-s + 1.69·41-s + 0.715·43-s + 0.333·45-s + 0.772·47-s + 1.49·49-s − 0.143·51-s − 0.392·53-s + 0.345·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6128\)    =    \(2^{4} \cdot 383\)
Sign: $1$
Analytic conductor: \(48.9323\)
Root analytic conductor: \(6.99516\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6128,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5347910557\)
\(L(\frac12)\) \(\approx\) \(0.5347910557\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
383 \( 1 + T \)
good3 \( 1 - 1.01T + 3T^{2} \)
5 \( 1 + 1.13T + 5T^{2} \)
7 \( 1 + 4.18T + 7T^{2} \)
11 \( 1 + 2.25T + 11T^{2} \)
13 \( 1 + 5.91T + 13T^{2} \)
17 \( 1 + 1.01T + 17T^{2} \)
19 \( 1 - 2.69T + 19T^{2} \)
23 \( 1 - 3.02T + 23T^{2} \)
29 \( 1 - 1.59T + 29T^{2} \)
31 \( 1 + 9.38T + 31T^{2} \)
37 \( 1 + 9.18T + 37T^{2} \)
41 \( 1 - 10.8T + 41T^{2} \)
43 \( 1 - 4.68T + 43T^{2} \)
47 \( 1 - 5.29T + 47T^{2} \)
53 \( 1 + 2.86T + 53T^{2} \)
59 \( 1 - 9.98T + 59T^{2} \)
61 \( 1 + 10.2T + 61T^{2} \)
67 \( 1 - 2.17T + 67T^{2} \)
71 \( 1 - 14.8T + 71T^{2} \)
73 \( 1 + 8.14T + 73T^{2} \)
79 \( 1 + 10.1T + 79T^{2} \)
83 \( 1 - 2.61T + 83T^{2} \)
89 \( 1 + 16.2T + 89T^{2} \)
97 \( 1 + 13.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.947337902531973112257096684144, −7.32940164434354235334628951659, −6.94219991023897863671679770907, −5.78881825119052746104751935932, −5.36269743560679464568546048326, −4.25857108771159457333610297385, −3.42977949156104238550900826379, −2.85403607057022271233078147350, −2.21767935603171068150518302175, −0.33859756096322468965390353139, 0.33859756096322468965390353139, 2.21767935603171068150518302175, 2.85403607057022271233078147350, 3.42977949156104238550900826379, 4.25857108771159457333610297385, 5.36269743560679464568546048326, 5.78881825119052746104751935932, 6.94219991023897863671679770907, 7.32940164434354235334628951659, 7.947337902531973112257096684144

Graph of the $Z$-function along the critical line