Properties

Label 6128.2.a.m
Level $6128$
Weight $2$
Character orbit 6128.a
Self dual yes
Analytic conductor $48.932$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6128,2,Mod(1,6128)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6128, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6128.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6128 = 2^{4} \cdot 383 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6128.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.9323263586\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} - 19 x^{14} + 120 x^{13} + 105 x^{12} - 1092 x^{11} - 28 x^{10} + 4827 x^{9} + \cdots + 293 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1532)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - \beta_{9} q^{5} + (\beta_{11} + 1) q^{7} + (\beta_{11} + \beta_{9} - \beta_{6} + \beta_1) q^{9} + ( - \beta_{14} + \beta_{13} + \cdots + \beta_{5}) q^{11} + ( - \beta_{14} + \beta_{13} - \beta_{11} + \cdots - 1) q^{13}+ \cdots + (\beta_{15} - \beta_{14} + 2 \beta_{13} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{3} - 3 q^{5} + 18 q^{7} + 15 q^{9} + 6 q^{11} - 14 q^{13} + 18 q^{15} - q^{17} + 18 q^{19} - 12 q^{21} + 20 q^{23} + 11 q^{25} + 20 q^{27} - 13 q^{29} + 19 q^{31} - 12 q^{33} + 22 q^{35} - 23 q^{37}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 5 x^{15} - 19 x^{14} + 120 x^{13} + 105 x^{12} - 1092 x^{11} - 28 x^{10} + 4827 x^{9} + \cdots + 293 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 1578298941 \nu^{15} - 13868464344 \nu^{14} - 1306890308 \nu^{13} + 290599475517 \nu^{12} + \cdots + 601881107165 ) / 51974813039 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 3692998010 \nu^{15} + 91032341297 \nu^{14} - 223966515582 \nu^{13} - 1902438030482 \nu^{12} + \cdots - 8358151592940 ) / 51974813039 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 4300050470 \nu^{15} - 97356261976 \nu^{14} + 226199488848 \nu^{13} + 2043642817780 \nu^{12} + \cdots + 9565970733240 ) / 51974813039 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 5948961979 \nu^{15} - 53174099843 \nu^{14} - 3280506541 \nu^{13} + 1125768272476 \nu^{12} + \cdots + 3146319753010 ) / 51974813039 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 7492853149 \nu^{15} - 23891464237 \nu^{14} - 176180510614 \nu^{13} + 542859478604 \nu^{12} + \cdots - 492938067810 ) / 51974813039 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 7851749601 \nu^{15} - 6553989699 \nu^{14} + 308351466690 \nu^{13} + 83510415430 \nu^{12} + \cdots + 4245751259920 ) / 51974813039 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 10190983653 \nu^{15} + 26264443746 \nu^{14} + 266340241337 \nu^{13} - 620134876645 \nu^{12} + \cdots + 1379370256161 ) / 51974813039 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 11055257580 \nu^{15} + 20237461469 \nu^{14} + 320170280148 \nu^{13} - 498156060467 \nu^{12} + \cdots + 2503737441477 ) / 51974813039 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 13283761879 \nu^{15} + 41760801771 \nu^{14} + 316042874288 \nu^{13} - 954760454350 \nu^{12} + \cdots + 771124918111 ) / 51974813039 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 18548110729 \nu^{15} - 44128925706 \nu^{14} - 496350790762 \nu^{13} + 1041015539071 \nu^{12} + \cdots - 3152599948404 ) / 51974813039 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 31240840918 \nu^{15} + 172070028821 \nu^{14} + 449667044142 \nu^{13} - 3756440129461 \nu^{12} + \cdots - 5816752903371 ) / 51974813039 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 34413934960 \nu^{15} - 188037859006 \nu^{14} - 503890010063 \nu^{13} + 4117386055286 \nu^{12} + \cdots + 6052941253609 ) / 51974813039 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 36033693937 \nu^{15} - 198779747916 \nu^{14} - 514348602828 \nu^{13} + 4323044184824 \nu^{12} + \cdots + 5901443684273 ) / 51974813039 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 42683228554 \nu^{15} - 250482559542 \nu^{14} - 553877354465 \nu^{13} + 5445406579337 \nu^{12} + \cdots + 9103386308163 ) / 51974813039 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{11} + \beta_{9} - \beta_{6} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{15} - \beta_{14} + \beta_{12} + 2\beta_{11} + \beta_{9} + \beta_{8} + 2\beta_{5} - 2\beta_{2} + 8\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{13} + \beta_{12} + 10 \beta_{11} - \beta_{10} + 11 \beta_{9} + 2 \beta_{8} - \beta_{7} + \cdots + 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 13 \beta_{15} - 11 \beta_{14} - 2 \beta_{13} + 11 \beta_{12} + 26 \beta_{11} + 15 \beta_{9} + 12 \beta_{8} + \cdots - 15 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 4 \beta_{15} - 4 \beta_{14} + 12 \beta_{13} + 13 \beta_{12} + 95 \beta_{11} - 11 \beta_{10} + 104 \beta_{9} + \cdots + 102 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 144 \beta_{15} - 112 \beta_{14} - 32 \beta_{13} + 105 \beta_{12} + 281 \beta_{11} + \beta_{10} + \cdots - 166 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 97 \beta_{15} - 92 \beta_{14} + 122 \beta_{13} + 149 \beta_{12} + 904 \beta_{11} - 90 \beta_{10} + \cdots + 692 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 1539 \beta_{15} - 1151 \beta_{14} - 371 \beta_{13} + 979 \beta_{12} + 2885 \beta_{11} + 45 \beta_{10} + \cdots - 1668 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 1610 \beta_{15} - 1457 \beta_{14} + 1184 \beta_{13} + 1657 \beta_{12} + 8701 \beta_{11} - 589 \beta_{10} + \cdots + 4743 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 16281 \beta_{15} - 11964 \beta_{14} - 3774 \beta_{13} + 9210 \beta_{12} + 29047 \beta_{11} + \cdots - 16187 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 22716 \beta_{15} - 19769 \beta_{14} + 11226 \beta_{13} + 18101 \beta_{12} + 84723 \beta_{11} + \cdots + 31510 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 171706 \beta_{15} - 125225 \beta_{14} - 35811 \beta_{13} + 88125 \beta_{12} + 289979 \beta_{11} + \cdots - 155722 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 293197 \beta_{15} - 247050 \beta_{14} + 104763 \beta_{13} + 194976 \beta_{12} + 832869 \beta_{11} + \cdots + 190725 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 1809618 \beta_{15} - 1315884 \beta_{14} - 325361 \beta_{13} + 857356 \beta_{12} + 2884140 \beta_{11} + \cdots - 1503870 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.89444
−2.66599
−1.86965
−1.18145
−1.16448
−1.11256
−0.429998
−0.217333
0.718088
1.01660
1.64894
2.23106
2.23552
2.38050
3.08362
3.22157
0 −2.89444 0 −3.18445 0 1.04122 0 5.37776 0
1.2 0 −2.66599 0 −1.45842 0 5.07062 0 4.10753 0
1.3 0 −1.86965 0 −2.57673 0 2.60832 0 0.495609 0
1.4 0 −1.18145 0 −1.57341 0 −1.81551 0 −1.60418 0
1.5 0 −1.16448 0 0.505324 0 0.507216 0 −1.64398 0
1.6 0 −1.11256 0 3.88639 0 5.27642 0 −1.76221 0
1.7 0 −0.429998 0 1.29780 0 2.55748 0 −2.81510 0
1.8 0 −0.217333 0 0.711589 0 0.553517 0 −2.95277 0
1.9 0 0.718088 0 −3.05261 0 −0.100553 0 −2.48435 0
1.10 0 1.01660 0 −1.13666 0 −4.18222 0 −1.96652 0
1.11 0 1.64894 0 2.14574 0 −2.65197 0 −0.280993 0
1.12 0 2.23106 0 0.977854 0 4.56692 0 1.97764 0
1.13 0 2.23552 0 −3.10243 0 −1.55126 0 1.99756 0
1.14 0 2.38050 0 4.04378 0 2.78993 0 2.66676 0
1.15 0 3.08362 0 −2.45571 0 3.25166 0 6.50872 0
1.16 0 3.22157 0 1.97192 0 0.0782131 0 7.37852 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.16
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(383\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6128.2.a.m 16
4.b odd 2 1 1532.2.a.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1532.2.a.c 16 4.b odd 2 1
6128.2.a.m 16 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6128))\):

\( T_{3}^{16} - 5 T_{3}^{15} - 19 T_{3}^{14} + 120 T_{3}^{13} + 105 T_{3}^{12} - 1092 T_{3}^{11} + \cdots + 293 \) Copy content Toggle raw display
\( T_{5}^{16} + 3 T_{5}^{15} - 41 T_{5}^{14} - 137 T_{5}^{13} + 591 T_{5}^{12} + 2235 T_{5}^{11} + \cdots + 15104 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} - 5 T^{15} + \cdots + 293 \) Copy content Toggle raw display
$5$ \( T^{16} + 3 T^{15} + \cdots + 15104 \) Copy content Toggle raw display
$7$ \( T^{16} - 18 T^{15} + \cdots - 531 \) Copy content Toggle raw display
$11$ \( T^{16} - 6 T^{15} + \cdots - 5465856 \) Copy content Toggle raw display
$13$ \( T^{16} + 14 T^{15} + \cdots + 8241152 \) Copy content Toggle raw display
$17$ \( T^{16} + T^{15} + \cdots + 996388 \) Copy content Toggle raw display
$19$ \( T^{16} - 18 T^{15} + \cdots + 55259851 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 2095229091 \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 132663516 \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots - 3759736147 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots - 1149947648 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 14656850688 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 630594267549 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 30852972544 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots - 4066764544 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots - 89484260096 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots - 2227622719232 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots - 554978869443 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots - 135528796933 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 112894640916 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 27768943788032 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots - 412962523392 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots - 84811145472 \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 193121395968 \) Copy content Toggle raw display
show more
show less