L(s) = 1 | − 9·3-s + 94.1·5-s − 33.4·7-s + 81·9-s − 109.·11-s − 169·13-s − 847.·15-s + 1.15e3·17-s − 1.31e3·19-s + 301.·21-s − 52.2·23-s + 5.73e3·25-s − 729·27-s − 7.09e3·29-s − 8.21e3·31-s + 988.·33-s − 3.14e3·35-s − 1.28e4·37-s + 1.52e3·39-s + 2.81e3·41-s − 3.49e3·43-s + 7.62e3·45-s + 4.23e3·47-s − 1.56e4·49-s − 1.03e4·51-s + 1.35e4·53-s − 1.03e4·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.68·5-s − 0.258·7-s + 0.333·9-s − 0.273·11-s − 0.277·13-s − 0.972·15-s + 0.969·17-s − 0.834·19-s + 0.149·21-s − 0.0205·23-s + 1.83·25-s − 0.192·27-s − 1.56·29-s − 1.53·31-s + 0.157·33-s − 0.434·35-s − 1.53·37-s + 0.160·39-s + 0.261·41-s − 0.288·43-s + 0.561·45-s + 0.279·47-s − 0.933·49-s − 0.559·51-s + 0.661·53-s − 0.460·55-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(624s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+9T |
| 13 | 1+169T |
good | 5 | 1−94.1T+3.12e3T2 |
| 7 | 1+33.4T+1.68e4T2 |
| 11 | 1+109.T+1.61e5T2 |
| 17 | 1−1.15e3T+1.41e6T2 |
| 19 | 1+1.31e3T+2.47e6T2 |
| 23 | 1+52.2T+6.43e6T2 |
| 29 | 1+7.09e3T+2.05e7T2 |
| 31 | 1+8.21e3T+2.86e7T2 |
| 37 | 1+1.28e4T+6.93e7T2 |
| 41 | 1−2.81e3T+1.15e8T2 |
| 43 | 1+3.49e3T+1.47e8T2 |
| 47 | 1−4.23e3T+2.29e8T2 |
| 53 | 1−1.35e4T+4.18e8T2 |
| 59 | 1−4.26e4T+7.14e8T2 |
| 61 | 1−3.59e4T+8.44e8T2 |
| 67 | 1+3.51e4T+1.35e9T2 |
| 71 | 1+8.00e3T+1.80e9T2 |
| 73 | 1+1.16e4T+2.07e9T2 |
| 79 | 1+2.82e4T+3.07e9T2 |
| 83 | 1+3.12e3T+3.93e9T2 |
| 89 | 1−9.25e4T+5.58e9T2 |
| 97 | 1−6.86e3T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.578908631620483307790933046459, −8.772635105826026595770429892442, −7.41207973736681211725766963521, −6.54808797305051215125570994080, −5.60378161056747434002530798638, −5.24320583567421173657447011017, −3.69738870379290766701756430400, −2.31381533049260790471630204992, −1.47443454240362464698813516608, 0,
1.47443454240362464698813516608, 2.31381533049260790471630204992, 3.69738870379290766701756430400, 5.24320583567421173657447011017, 5.60378161056747434002530798638, 6.54808797305051215125570994080, 7.41207973736681211725766963521, 8.772635105826026595770429892442, 9.578908631620483307790933046459