Properties

Label 624.6.a.v
Level $624$
Weight $6$
Character orbit 624.a
Self dual yes
Analytic conductor $100.080$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,6,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(100.079503563\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 186x^{2} - 529x - 95 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 5 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 9 q^{3} + ( - \beta_1 - 2) q^{5} + ( - \beta_{2} + 44) q^{7} + 81 q^{9} + (\beta_{3} - 2 \beta_1 - 24) q^{11} - 169 q^{13} + (9 \beta_1 + 18) q^{15} + (6 \beta_{2} - 4 \beta_1 + 306) q^{17} + ( - 4 \beta_{3} + \beta_{2} + \cdots - 964) q^{19}+ \cdots + (81 \beta_{3} - 162 \beta_1 - 1944) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{3} - 8 q^{5} + 176 q^{7} + 324 q^{9} - 96 q^{11} - 676 q^{13} + 72 q^{15} + 1224 q^{17} - 3856 q^{19} - 1584 q^{21} + 368 q^{23} + 5884 q^{25} - 2916 q^{27} + 264 q^{29} - 10928 q^{31} + 864 q^{33}+ \cdots - 7776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 186x^{2} - 529x - 95 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{3} + 12\nu^{2} + 312\nu - 124 ) / 9 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{3} - 4\nu^{2} - 328\nu - 618 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{3} + 8\nu^{2} + 776\nu + 1206 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 2\beta_{2} + 10 ) / 40 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{3} + 19\beta_{2} + 45\beta _1 + 3730 ) / 40 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 84\beta_{3} + 213\beta_{2} + 45\beta _1 + 10730 ) / 20 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−11.3478
15.3685
−0.192612
−2.82810
0 −9.00000 0 −91.2603 0 155.198 0 81.0000 0
1.2 0 −9.00000 0 −29.2714 0 −174.732 0 81.0000 0
1.3 0 −9.00000 0 18.4040 0 228.995 0 81.0000 0
1.4 0 −9.00000 0 94.1278 0 −33.4615 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 624.6.a.v 4
4.b odd 2 1 312.6.a.i 4
12.b even 2 1 936.6.a.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.6.a.i 4 4.b odd 2 1
624.6.a.v 4 1.a even 1 1 trivial
936.6.a.m 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(624))\):

\( T_{5}^{4} + 8T_{5}^{3} - 9160T_{5}^{2} - 91808T_{5} + 4627584 \) Copy content Toggle raw display
\( T_{7}^{4} - 176T_{7}^{3} - 38600T_{7}^{2} + 5152800T_{7} + 207792000 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 9)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 8 T^{3} + \cdots + 4627584 \) Copy content Toggle raw display
$7$ \( T^{4} - 176 T^{3} + \cdots + 207792000 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 1596691920 \) Copy content Toggle raw display
$13$ \( (T + 169)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 904643703696 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 4883857879680 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 1369714914560 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 963566008276752 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 674112129948800 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 14\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 18\!\cdots\!40 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 896054731550464 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 76\!\cdots\!28 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 21\!\cdots\!92 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 23\!\cdots\!08 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 18\!\cdots\!52 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 11\!\cdots\!04 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 45\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 48\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 66\!\cdots\!76 \) Copy content Toggle raw display
show more
show less