Properties

Label 2-624-1.1-c5-0-48
Degree $2$
Conductor $624$
Sign $-1$
Analytic cond. $100.079$
Root an. cond. $10.0039$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 94.1·5-s − 33.4·7-s + 81·9-s − 109.·11-s − 169·13-s − 847.·15-s + 1.15e3·17-s − 1.31e3·19-s + 301.·21-s − 52.2·23-s + 5.73e3·25-s − 729·27-s − 7.09e3·29-s − 8.21e3·31-s + 988.·33-s − 3.14e3·35-s − 1.28e4·37-s + 1.52e3·39-s + 2.81e3·41-s − 3.49e3·43-s + 7.62e3·45-s + 4.23e3·47-s − 1.56e4·49-s − 1.03e4·51-s + 1.35e4·53-s − 1.03e4·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.68·5-s − 0.258·7-s + 0.333·9-s − 0.273·11-s − 0.277·13-s − 0.972·15-s + 0.969·17-s − 0.834·19-s + 0.149·21-s − 0.0205·23-s + 1.83·25-s − 0.192·27-s − 1.56·29-s − 1.53·31-s + 0.157·33-s − 0.434·35-s − 1.53·37-s + 0.160·39-s + 0.261·41-s − 0.288·43-s + 0.561·45-s + 0.279·47-s − 0.933·49-s − 0.559·51-s + 0.661·53-s − 0.460·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(624\)    =    \(2^{4} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(100.079\)
Root analytic conductor: \(10.0039\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 624,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 9T \)
13 \( 1 + 169T \)
good5 \( 1 - 94.1T + 3.12e3T^{2} \)
7 \( 1 + 33.4T + 1.68e4T^{2} \)
11 \( 1 + 109.T + 1.61e5T^{2} \)
17 \( 1 - 1.15e3T + 1.41e6T^{2} \)
19 \( 1 + 1.31e3T + 2.47e6T^{2} \)
23 \( 1 + 52.2T + 6.43e6T^{2} \)
29 \( 1 + 7.09e3T + 2.05e7T^{2} \)
31 \( 1 + 8.21e3T + 2.86e7T^{2} \)
37 \( 1 + 1.28e4T + 6.93e7T^{2} \)
41 \( 1 - 2.81e3T + 1.15e8T^{2} \)
43 \( 1 + 3.49e3T + 1.47e8T^{2} \)
47 \( 1 - 4.23e3T + 2.29e8T^{2} \)
53 \( 1 - 1.35e4T + 4.18e8T^{2} \)
59 \( 1 - 4.26e4T + 7.14e8T^{2} \)
61 \( 1 - 3.59e4T + 8.44e8T^{2} \)
67 \( 1 + 3.51e4T + 1.35e9T^{2} \)
71 \( 1 + 8.00e3T + 1.80e9T^{2} \)
73 \( 1 + 1.16e4T + 2.07e9T^{2} \)
79 \( 1 + 2.82e4T + 3.07e9T^{2} \)
83 \( 1 + 3.12e3T + 3.93e9T^{2} \)
89 \( 1 - 9.25e4T + 5.58e9T^{2} \)
97 \( 1 - 6.86e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.578908631620483307790933046459, −8.772635105826026595770429892442, −7.41207973736681211725766963521, −6.54808797305051215125570994080, −5.60378161056747434002530798638, −5.24320583567421173657447011017, −3.69738870379290766701756430400, −2.31381533049260790471630204992, −1.47443454240362464698813516608, 0, 1.47443454240362464698813516608, 2.31381533049260790471630204992, 3.69738870379290766701756430400, 5.24320583567421173657447011017, 5.60378161056747434002530798638, 6.54808797305051215125570994080, 7.41207973736681211725766963521, 8.772635105826026595770429892442, 9.578908631620483307790933046459

Graph of the $Z$-function along the critical line