Properties

Label 2-63-1.1-c5-0-9
Degree $2$
Conductor $63$
Sign $1$
Analytic cond. $10.1041$
Root an. cond. $3.17870$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·2-s + 68·4-s + 56·5-s − 49·7-s + 360·8-s + 560·10-s − 232·11-s − 140·13-s − 490·14-s + 1.42e3·16-s + 1.72e3·17-s − 98·19-s + 3.80e3·20-s − 2.32e3·22-s − 1.82e3·23-s + 11·25-s − 1.40e3·26-s − 3.33e3·28-s − 3.41e3·29-s − 7.64e3·31-s + 2.72e3·32-s + 1.72e4·34-s − 2.74e3·35-s − 1.03e4·37-s − 980·38-s + 2.01e4·40-s + 1.79e4·41-s + ⋯
L(s)  = 1  + 1.76·2-s + 17/8·4-s + 1.00·5-s − 0.377·7-s + 1.98·8-s + 1.77·10-s − 0.578·11-s − 0.229·13-s − 0.668·14-s + 1.39·16-s + 1.44·17-s − 0.0622·19-s + 2.12·20-s − 1.02·22-s − 0.718·23-s + 0.00351·25-s − 0.406·26-s − 0.803·28-s − 0.754·29-s − 1.42·31-s + 0.469·32-s + 2.55·34-s − 0.378·35-s − 1.24·37-s − 0.110·38-s + 1.99·40-s + 1.66·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(63\)    =    \(3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(10.1041\)
Root analytic conductor: \(3.17870\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 63,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.975203293\)
\(L(\frac12)\) \(\approx\) \(4.975203293\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + p^{2} T \)
good2 \( 1 - 5 p T + p^{5} T^{2} \)
5 \( 1 - 56 T + p^{5} T^{2} \)
11 \( 1 + 232 T + p^{5} T^{2} \)
13 \( 1 + 140 T + p^{5} T^{2} \)
17 \( 1 - 1722 T + p^{5} T^{2} \)
19 \( 1 + 98 T + p^{5} T^{2} \)
23 \( 1 + 1824 T + p^{5} T^{2} \)
29 \( 1 + 3418 T + p^{5} T^{2} \)
31 \( 1 + 7644 T + p^{5} T^{2} \)
37 \( 1 + 10398 T + p^{5} T^{2} \)
41 \( 1 - 17962 T + p^{5} T^{2} \)
43 \( 1 - 10880 T + p^{5} T^{2} \)
47 \( 1 + 9324 T + p^{5} T^{2} \)
53 \( 1 + 2262 T + p^{5} T^{2} \)
59 \( 1 - 2730 T + p^{5} T^{2} \)
61 \( 1 - 25648 T + p^{5} T^{2} \)
67 \( 1 + 48404 T + p^{5} T^{2} \)
71 \( 1 - 58560 T + p^{5} T^{2} \)
73 \( 1 - 68082 T + p^{5} T^{2} \)
79 \( 1 - 31784 T + p^{5} T^{2} \)
83 \( 1 - 20538 T + p^{5} T^{2} \)
89 \( 1 - 50582 T + p^{5} T^{2} \)
97 \( 1 + 58506 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.94913286263688147168190464311, −12.96812867206438203949581105958, −12.25188367449539334752303065913, −10.83115965099407741695904204146, −9.639434028993440379376197880531, −7.46641612547275078022193965130, −6.01506616882935937543720922543, −5.29641825413961227450840317371, −3.59013564119637838204717865625, −2.14810415613733623647912509178, 2.14810415613733623647912509178, 3.59013564119637838204717865625, 5.29641825413961227450840317371, 6.01506616882935937543720922543, 7.46641612547275078022193965130, 9.639434028993440379376197880531, 10.83115965099407741695904204146, 12.25188367449539334752303065913, 12.96812867206438203949581105958, 13.94913286263688147168190464311

Graph of the $Z$-function along the critical line