gp: [N,k,chi] = [63,6,Mod(1,63)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(63, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("63.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [1,10]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
7 7 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 − 10 T_{2} - 10 T 2 − 1 0
T2 - 10
acting on S 6 n e w ( Γ 0 ( 63 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(63)) S 6 n e w ( Γ 0 ( 6 3 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T − 10 T - 10 T − 1 0
T - 10
3 3 3
T T T
T
5 5 5
T − 56 T - 56 T − 5 6
T - 56
7 7 7
T + 49 T + 49 T + 4 9
T + 49
11 11 1 1
T + 232 T + 232 T + 2 3 2
T + 232
13 13 1 3
T + 140 T + 140 T + 1 4 0
T + 140
17 17 1 7
T − 1722 T - 1722 T − 1 7 2 2
T - 1722
19 19 1 9
T + 98 T + 98 T + 9 8
T + 98
23 23 2 3
T + 1824 T + 1824 T + 1 8 2 4
T + 1824
29 29 2 9
T + 3418 T + 3418 T + 3 4 1 8
T + 3418
31 31 3 1
T + 7644 T + 7644 T + 7 6 4 4
T + 7644
37 37 3 7
T + 10398 T + 10398 T + 1 0 3 9 8
T + 10398
41 41 4 1
T − 17962 T - 17962 T − 1 7 9 6 2
T - 17962
43 43 4 3
T − 10880 T - 10880 T − 1 0 8 8 0
T - 10880
47 47 4 7
T + 9324 T + 9324 T + 9 3 2 4
T + 9324
53 53 5 3
T + 2262 T + 2262 T + 2 2 6 2
T + 2262
59 59 5 9
T − 2730 T - 2730 T − 2 7 3 0
T - 2730
61 61 6 1
T − 25648 T - 25648 T − 2 5 6 4 8
T - 25648
67 67 6 7
T + 48404 T + 48404 T + 4 8 4 0 4
T + 48404
71 71 7 1
T − 58560 T - 58560 T − 5 8 5 6 0
T - 58560
73 73 7 3
T − 68082 T - 68082 T − 6 8 0 8 2
T - 68082
79 79 7 9
T − 31784 T - 31784 T − 3 1 7 8 4
T - 31784
83 83 8 3
T − 20538 T - 20538 T − 2 0 5 3 8
T - 20538
89 89 8 9
T − 50582 T - 50582 T − 5 0 5 8 2
T - 50582
97 97 9 7
T + 58506 T + 58506 T + 5 8 5 0 6
T + 58506
show more
show less