Properties

Label 63.6.a.e
Level $63$
Weight $6$
Character orbit 63.a
Self dual yes
Analytic conductor $10.104$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,6,Mod(1,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.1041806482\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 10 q^{2} + 68 q^{4} + 56 q^{5} - 49 q^{7} + 360 q^{8} + 560 q^{10} - 232 q^{11} - 140 q^{13} - 490 q^{14} + 1424 q^{16} + 1722 q^{17} - 98 q^{19} + 3808 q^{20} - 2320 q^{22} - 1824 q^{23} + 11 q^{25}+ \cdots + 24010 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
10.0000 0 68.0000 56.0000 0 −49.0000 360.000 0 560.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.6.a.e 1
3.b odd 2 1 7.6.a.a 1
4.b odd 2 1 1008.6.a.y 1
7.b odd 2 1 441.6.a.k 1
12.b even 2 1 112.6.a.g 1
15.d odd 2 1 175.6.a.b 1
15.e even 4 2 175.6.b.a 2
21.c even 2 1 49.6.a.a 1
21.g even 6 2 49.6.c.b 2
21.h odd 6 2 49.6.c.c 2
24.f even 2 1 448.6.a.c 1
24.h odd 2 1 448.6.a.m 1
33.d even 2 1 847.6.a.b 1
84.h odd 2 1 784.6.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.6.a.a 1 3.b odd 2 1
49.6.a.a 1 21.c even 2 1
49.6.c.b 2 21.g even 6 2
49.6.c.c 2 21.h odd 6 2
63.6.a.e 1 1.a even 1 1 trivial
112.6.a.g 1 12.b even 2 1
175.6.a.b 1 15.d odd 2 1
175.6.b.a 2 15.e even 4 2
441.6.a.k 1 7.b odd 2 1
448.6.a.c 1 24.f even 2 1
448.6.a.m 1 24.h odd 2 1
784.6.a.c 1 84.h odd 2 1
847.6.a.b 1 33.d even 2 1
1008.6.a.y 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 10 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(63))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 10 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 56 \) Copy content Toggle raw display
$7$ \( T + 49 \) Copy content Toggle raw display
$11$ \( T + 232 \) Copy content Toggle raw display
$13$ \( T + 140 \) Copy content Toggle raw display
$17$ \( T - 1722 \) Copy content Toggle raw display
$19$ \( T + 98 \) Copy content Toggle raw display
$23$ \( T + 1824 \) Copy content Toggle raw display
$29$ \( T + 3418 \) Copy content Toggle raw display
$31$ \( T + 7644 \) Copy content Toggle raw display
$37$ \( T + 10398 \) Copy content Toggle raw display
$41$ \( T - 17962 \) Copy content Toggle raw display
$43$ \( T - 10880 \) Copy content Toggle raw display
$47$ \( T + 9324 \) Copy content Toggle raw display
$53$ \( T + 2262 \) Copy content Toggle raw display
$59$ \( T - 2730 \) Copy content Toggle raw display
$61$ \( T - 25648 \) Copy content Toggle raw display
$67$ \( T + 48404 \) Copy content Toggle raw display
$71$ \( T - 58560 \) Copy content Toggle raw display
$73$ \( T - 68082 \) Copy content Toggle raw display
$79$ \( T - 31784 \) Copy content Toggle raw display
$83$ \( T - 20538 \) Copy content Toggle raw display
$89$ \( T - 50582 \) Copy content Toggle raw display
$97$ \( T + 58506 \) Copy content Toggle raw display
show more
show less