Properties

Label 63.6.a.e
Level 6363
Weight 66
Character orbit 63.a
Self dual yes
Analytic conductor 10.10410.104
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [63,6,Mod(1,63)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(63, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("63.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 63=327 63 = 3^{2} \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 63.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 10.104180648210.1041806482
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 7)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+10q2+68q4+56q549q7+360q8+560q10232q11140q13490q14+1424q16+1722q1798q19+3808q202320q221824q23+11q25++24010q98+O(q100) q + 10 q^{2} + 68 q^{4} + 56 q^{5} - 49 q^{7} + 360 q^{8} + 560 q^{10} - 232 q^{11} - 140 q^{13} - 490 q^{14} + 1424 q^{16} + 1722 q^{17} - 98 q^{19} + 3808 q^{20} - 2320 q^{22} - 1824 q^{23} + 11 q^{25}+ \cdots + 24010 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
10.0000 0 68.0000 56.0000 0 −49.0000 360.000 0 560.000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.6.a.e 1
3.b odd 2 1 7.6.a.a 1
4.b odd 2 1 1008.6.a.y 1
7.b odd 2 1 441.6.a.k 1
12.b even 2 1 112.6.a.g 1
15.d odd 2 1 175.6.a.b 1
15.e even 4 2 175.6.b.a 2
21.c even 2 1 49.6.a.a 1
21.g even 6 2 49.6.c.b 2
21.h odd 6 2 49.6.c.c 2
24.f even 2 1 448.6.a.c 1
24.h odd 2 1 448.6.a.m 1
33.d even 2 1 847.6.a.b 1
84.h odd 2 1 784.6.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.6.a.a 1 3.b odd 2 1
49.6.a.a 1 21.c even 2 1
49.6.c.b 2 21.g even 6 2
49.6.c.c 2 21.h odd 6 2
63.6.a.e 1 1.a even 1 1 trivial
112.6.a.g 1 12.b even 2 1
175.6.a.b 1 15.d odd 2 1
175.6.b.a 2 15.e even 4 2
441.6.a.k 1 7.b odd 2 1
448.6.a.c 1 24.f even 2 1
448.6.a.m 1 24.h odd 2 1
784.6.a.c 1 84.h odd 2 1
847.6.a.b 1 33.d even 2 1
1008.6.a.y 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T210 T_{2} - 10 acting on S6new(Γ0(63))S_{6}^{\mathrm{new}}(\Gamma_0(63)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10 T - 10 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T56 T - 56 Copy content Toggle raw display
77 T+49 T + 49 Copy content Toggle raw display
1111 T+232 T + 232 Copy content Toggle raw display
1313 T+140 T + 140 Copy content Toggle raw display
1717 T1722 T - 1722 Copy content Toggle raw display
1919 T+98 T + 98 Copy content Toggle raw display
2323 T+1824 T + 1824 Copy content Toggle raw display
2929 T+3418 T + 3418 Copy content Toggle raw display
3131 T+7644 T + 7644 Copy content Toggle raw display
3737 T+10398 T + 10398 Copy content Toggle raw display
4141 T17962 T - 17962 Copy content Toggle raw display
4343 T10880 T - 10880 Copy content Toggle raw display
4747 T+9324 T + 9324 Copy content Toggle raw display
5353 T+2262 T + 2262 Copy content Toggle raw display
5959 T2730 T - 2730 Copy content Toggle raw display
6161 T25648 T - 25648 Copy content Toggle raw display
6767 T+48404 T + 48404 Copy content Toggle raw display
7171 T58560 T - 58560 Copy content Toggle raw display
7373 T68082 T - 68082 Copy content Toggle raw display
7979 T31784 T - 31784 Copy content Toggle raw display
8383 T20538 T - 20538 Copy content Toggle raw display
8989 T50582 T - 50582 Copy content Toggle raw display
9797 T+58506 T + 58506 Copy content Toggle raw display
show more
show less