L(s) = 1 | + 10·2-s + 68·4-s + 56·5-s − 49·7-s + 360·8-s + 560·10-s − 232·11-s − 140·13-s − 490·14-s + 1.42e3·16-s + 1.72e3·17-s − 98·19-s + 3.80e3·20-s − 2.32e3·22-s − 1.82e3·23-s + 11·25-s − 1.40e3·26-s − 3.33e3·28-s − 3.41e3·29-s − 7.64e3·31-s + 2.72e3·32-s + 1.72e4·34-s − 2.74e3·35-s − 1.03e4·37-s − 980·38-s + 2.01e4·40-s + 1.79e4·41-s + ⋯ |
L(s) = 1 | + 1.76·2-s + 17/8·4-s + 1.00·5-s − 0.377·7-s + 1.98·8-s + 1.77·10-s − 0.578·11-s − 0.229·13-s − 0.668·14-s + 1.39·16-s + 1.44·17-s − 0.0622·19-s + 2.12·20-s − 1.02·22-s − 0.718·23-s + 0.00351·25-s − 0.406·26-s − 0.803·28-s − 0.754·29-s − 1.42·31-s + 0.469·32-s + 2.55·34-s − 0.378·35-s − 1.24·37-s − 0.110·38-s + 1.99·40-s + 1.66·41-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(63s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
4.975203293 |
L(21) |
≈ |
4.975203293 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+p2T |
good | 2 | 1−5pT+p5T2 |
| 5 | 1−56T+p5T2 |
| 11 | 1+232T+p5T2 |
| 13 | 1+140T+p5T2 |
| 17 | 1−1722T+p5T2 |
| 19 | 1+98T+p5T2 |
| 23 | 1+1824T+p5T2 |
| 29 | 1+3418T+p5T2 |
| 31 | 1+7644T+p5T2 |
| 37 | 1+10398T+p5T2 |
| 41 | 1−17962T+p5T2 |
| 43 | 1−10880T+p5T2 |
| 47 | 1+9324T+p5T2 |
| 53 | 1+2262T+p5T2 |
| 59 | 1−2730T+p5T2 |
| 61 | 1−25648T+p5T2 |
| 67 | 1+48404T+p5T2 |
| 71 | 1−58560T+p5T2 |
| 73 | 1−68082T+p5T2 |
| 79 | 1−31784T+p5T2 |
| 83 | 1−20538T+p5T2 |
| 89 | 1−50582T+p5T2 |
| 97 | 1+58506T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.94913286263688147168190464311, −12.96812867206438203949581105958, −12.25188367449539334752303065913, −10.83115965099407741695904204146, −9.639434028993440379376197880531, −7.46641612547275078022193965130, −6.01506616882935937543720922543, −5.29641825413961227450840317371, −3.59013564119637838204717865625, −2.14810415613733623647912509178,
2.14810415613733623647912509178, 3.59013564119637838204717865625, 5.29641825413961227450840317371, 6.01506616882935937543720922543, 7.46641612547275078022193965130, 9.639434028993440379376197880531, 10.83115965099407741695904204146, 12.25188367449539334752303065913, 12.96812867206438203949581105958, 13.94913286263688147168190464311