L(s) = 1 | + (−2.36 − 0.177i)2-s + (0.532 − 2.33i)3-s + (3.58 + 0.540i)4-s + (0.329 + 1.06i)5-s + (−1.67 + 5.42i)6-s + (1.40 − 2.24i)7-s + (−3.76 − 0.859i)8-s + (−2.45 − 1.18i)9-s + (−0.590 − 2.58i)10-s + (1.47 + 3.05i)11-s + (3.17 − 8.08i)12-s + (−3.11 − 1.82i)13-s + (−3.72 + 5.05i)14-s + (2.66 − 0.199i)15-s + (1.82 + 0.562i)16-s + (0.844 − 2.15i)17-s + ⋯ |
L(s) = 1 | + (−1.67 − 0.125i)2-s + (0.307 − 1.34i)3-s + (1.79 + 0.270i)4-s + (0.147 + 0.477i)5-s + (−0.683 + 2.21i)6-s + (0.532 − 0.846i)7-s + (−1.33 − 0.303i)8-s + (−0.818 − 0.394i)9-s + (−0.186 − 0.817i)10-s + (0.443 + 0.921i)11-s + (0.915 − 2.33i)12-s + (−0.863 − 0.505i)13-s + (−0.996 + 1.34i)14-s + (0.688 − 0.0516i)15-s + (0.456 + 0.140i)16-s + (0.204 − 0.521i)17-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.629+0.776i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.629+0.776i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.629+0.776i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(543,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.629+0.776i)
|
Particular Values
L(1) |
≈ |
0.317000−0.665066i |
L(21) |
≈ |
0.317000−0.665066i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−1.40+2.24i)T |
| 13 | 1+(3.11+1.82i)T |
good | 2 | 1+(2.36+0.177i)T+(1.97+0.298i)T2 |
| 3 | 1+(−0.532+2.33i)T+(−2.70−1.30i)T2 |
| 5 | 1+(−0.329−1.06i)T+(−4.13+2.81i)T2 |
| 11 | 1+(−1.47−3.05i)T+(−6.85+8.60i)T2 |
| 17 | 1+(−0.844+2.15i)T+(−12.4−11.5i)T2 |
| 19 | 1+1.22iT−19T2 |
| 23 | 1+(1.36+3.48i)T+(−16.8+15.6i)T2 |
| 29 | 1+(−0.429+1.09i)T+(−21.2−19.7i)T2 |
| 31 | 1+(−7.21−4.16i)T+(15.5+26.8i)T2 |
| 37 | 1+(1.06+7.06i)T+(−35.3+10.9i)T2 |
| 41 | 1+(0.0827+0.268i)T+(−33.8+23.0i)T2 |
| 43 | 1+(8.44+2.60i)T+(35.5+24.2i)T2 |
| 47 | 1+(0.702−1.02i)T+(−17.1−43.7i)T2 |
| 53 | 1+(−2.12−5.41i)T+(−38.8+36.0i)T2 |
| 59 | 1+(0.332+0.358i)T+(−4.40+58.8i)T2 |
| 61 | 1+(4.04+5.07i)T+(−13.5+59.4i)T2 |
| 67 | 1+13.3iT−67T2 |
| 71 | 1+(2.63−1.03i)T+(52.0−48.2i)T2 |
| 73 | 1+(0.772+1.13i)T+(−26.6+67.9i)T2 |
| 79 | 1+(−4.37−7.58i)T+(−39.5+68.4i)T2 |
| 83 | 1+(1.46−3.04i)T+(−51.7−64.8i)T2 |
| 89 | 1+(−5.04−7.40i)T+(−32.5+82.8i)T2 |
| 97 | 1+(−8.94−5.16i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.23354059292523284727489304834, −9.389070723627623247983864658531, −8.273326298096821843879340672055, −7.74273293334553246105047405418, −6.95956521605503465620220739962, −6.65880204497924090979010215753, −4.71769437436674798827618043113, −2.74289623046842130622557680598, −1.85582580807134000809605144233, −0.70604409407717312612563176703,
1.52525267029622145298889439762, 2.98300475944543503919572212262, 4.43409548037274909723867864672, 5.45530913006850842205955554062, 6.60098926319274173777663432784, 7.965164023957231740917190207174, 8.584301342189747269036790222662, 9.152327109679487663538100222801, 9.815739641671001852163111946613, 10.42969863029522526211006067389