L(s) = 1 | + (−0.726 + 1.21i)2-s + (−1.23 + 0.662i)3-s + (−0.944 − 1.76i)4-s + (0.634 + 0.773i)5-s + (0.0963 − 1.98i)6-s + (0.491 − 0.328i)7-s + (2.82 + 0.133i)8-s + (−0.568 + 0.850i)9-s + (−1.39 + 0.208i)10-s + (1.28 − 0.390i)11-s + (2.33 + 1.55i)12-s + (−3.74 − 3.07i)13-s + (0.0415 + 0.834i)14-s + (−1.29 − 0.538i)15-s + (−2.21 + 3.33i)16-s + (−4.56 + 1.89i)17-s + ⋯ |
L(s) = 1 | + (−0.513 + 0.858i)2-s + (−0.715 + 0.382i)3-s + (−0.472 − 0.881i)4-s + (0.283 + 0.345i)5-s + (0.0393 − 0.810i)6-s + (0.185 − 0.124i)7-s + (0.998 + 0.0472i)8-s + (−0.189 + 0.283i)9-s + (−0.442 + 0.0658i)10-s + (0.388 − 0.117i)11-s + (0.675 + 0.450i)12-s + (−1.03 − 0.852i)13-s + (0.0110 + 0.223i)14-s + (−0.335 − 0.138i)15-s + (−0.553 + 0.832i)16-s + (−1.10 + 0.458i)17-s + ⋯ |
Λ(s)=(=(640s/2ΓC(s)L(s)(−0.467+0.883i)Λ(2−s)
Λ(s)=(=(640s/2ΓC(s+1/2)L(s)(−0.467+0.883i)Λ(1−s)
Degree: |
2 |
Conductor: |
640
= 27⋅5
|
Sign: |
−0.467+0.883i
|
Analytic conductor: |
5.11042 |
Root analytic conductor: |
2.26062 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ640(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 640, ( :1/2), −0.467+0.883i)
|
Particular Values
L(1) |
≈ |
0.0678491−0.112669i |
L(21) |
≈ |
0.0678491−0.112669i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.726−1.21i)T |
| 5 | 1+(−0.634−0.773i)T |
good | 3 | 1+(1.23−0.662i)T+(1.66−2.49i)T2 |
| 7 | 1+(−0.491+0.328i)T+(2.67−6.46i)T2 |
| 11 | 1+(−1.28+0.390i)T+(9.14−6.11i)T2 |
| 13 | 1+(3.74+3.07i)T+(2.53+12.7i)T2 |
| 17 | 1+(4.56−1.89i)T+(12.0−12.0i)T2 |
| 19 | 1+(−0.748−7.59i)T+(−18.6+3.70i)T2 |
| 23 | 1+(3.22−0.642i)T+(21.2−8.80i)T2 |
| 29 | 1+(−1.38+4.55i)T+(−24.1−16.1i)T2 |
| 31 | 1+(0.603+0.603i)T+31iT2 |
| 37 | 1+(10.1+0.999i)T+(36.2+7.21i)T2 |
| 41 | 1+(2.10+10.5i)T+(−37.8+15.6i)T2 |
| 43 | 1+(2.32+1.24i)T+(23.8+35.7i)T2 |
| 47 | 1+(−3.11−7.52i)T+(−33.2+33.2i)T2 |
| 53 | 1+(2.45+8.10i)T+(−44.0+29.4i)T2 |
| 59 | 1+(−3.24+2.65i)T+(11.5−57.8i)T2 |
| 61 | 1+(3.50+6.56i)T+(−33.8+50.7i)T2 |
| 67 | 1+(2.96+5.54i)T+(−37.2+55.7i)T2 |
| 71 | 1+(0.235+0.353i)T+(−27.1+65.5i)T2 |
| 73 | 1+(−5.36−3.58i)T+(27.9+67.4i)T2 |
| 79 | 1+(5.03−12.1i)T+(−55.8−55.8i)T2 |
| 83 | 1+(5.72−0.563i)T+(81.4−16.1i)T2 |
| 89 | 1+(11.5+2.29i)T+(82.2+34.0i)T2 |
| 97 | 1+(−11.4−11.4i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72897608431912757178789624143, −10.31514854510217396477083510278, −9.553237618461870276661525122179, −8.362408178718593608167303583283, −7.70874019929076029550518488019, −6.60705882839828204942481387597, −5.79304260731559426628129461738, −5.11837258371480291578513585663, −3.97455112719891226674928554772, −2.00105791854458422748566614855,
0.090100458077449491605872925145, 1.64609389713097040880774430690, 2.84981566927584436335609728100, 4.44072798116961355125387203336, 5.13891182665617830344826420794, 6.69102700402496921638885125367, 7.15813009955398935085324824692, 8.704921526851681171072242313483, 9.085098782049047997683885341988, 10.00351359510391104378748283283