L(s) = 1 | + (−0.726 − 1.21i)2-s + (−1.23 − 0.662i)3-s + (−0.944 + 1.76i)4-s + (0.634 − 0.773i)5-s + (0.0963 + 1.98i)6-s + (0.491 + 0.328i)7-s + (2.82 − 0.133i)8-s + (−0.568 − 0.850i)9-s + (−1.39 − 0.208i)10-s + (1.28 + 0.390i)11-s + (2.33 − 1.55i)12-s + (−3.74 + 3.07i)13-s + (0.0415 − 0.834i)14-s + (−1.29 + 0.538i)15-s + (−2.21 − 3.33i)16-s + (−4.56 − 1.89i)17-s + ⋯ |
L(s) = 1 | + (−0.513 − 0.858i)2-s + (−0.715 − 0.382i)3-s + (−0.472 + 0.881i)4-s + (0.283 − 0.345i)5-s + (0.0393 + 0.810i)6-s + (0.185 + 0.124i)7-s + (0.998 − 0.0472i)8-s + (−0.189 − 0.283i)9-s + (−0.442 − 0.0658i)10-s + (0.388 + 0.117i)11-s + (0.675 − 0.450i)12-s + (−1.03 + 0.852i)13-s + (0.0110 − 0.223i)14-s + (−0.335 + 0.138i)15-s + (−0.553 − 0.832i)16-s + (−1.10 − 0.458i)17-s + ⋯ |
Λ(s)=(=(640s/2ΓC(s)L(s)(−0.467−0.883i)Λ(2−s)
Λ(s)=(=(640s/2ΓC(s+1/2)L(s)(−0.467−0.883i)Λ(1−s)
Degree: |
2 |
Conductor: |
640
= 27⋅5
|
Sign: |
−0.467−0.883i
|
Analytic conductor: |
5.11042 |
Root analytic conductor: |
2.26062 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ640(621,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 640, ( :1/2), −0.467−0.883i)
|
Particular Values
L(1) |
≈ |
0.0678491+0.112669i |
L(21) |
≈ |
0.0678491+0.112669i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.726+1.21i)T |
| 5 | 1+(−0.634+0.773i)T |
good | 3 | 1+(1.23+0.662i)T+(1.66+2.49i)T2 |
| 7 | 1+(−0.491−0.328i)T+(2.67+6.46i)T2 |
| 11 | 1+(−1.28−0.390i)T+(9.14+6.11i)T2 |
| 13 | 1+(3.74−3.07i)T+(2.53−12.7i)T2 |
| 17 | 1+(4.56+1.89i)T+(12.0+12.0i)T2 |
| 19 | 1+(−0.748+7.59i)T+(−18.6−3.70i)T2 |
| 23 | 1+(3.22+0.642i)T+(21.2+8.80i)T2 |
| 29 | 1+(−1.38−4.55i)T+(−24.1+16.1i)T2 |
| 31 | 1+(0.603−0.603i)T−31iT2 |
| 37 | 1+(10.1−0.999i)T+(36.2−7.21i)T2 |
| 41 | 1+(2.10−10.5i)T+(−37.8−15.6i)T2 |
| 43 | 1+(2.32−1.24i)T+(23.8−35.7i)T2 |
| 47 | 1+(−3.11+7.52i)T+(−33.2−33.2i)T2 |
| 53 | 1+(2.45−8.10i)T+(−44.0−29.4i)T2 |
| 59 | 1+(−3.24−2.65i)T+(11.5+57.8i)T2 |
| 61 | 1+(3.50−6.56i)T+(−33.8−50.7i)T2 |
| 67 | 1+(2.96−5.54i)T+(−37.2−55.7i)T2 |
| 71 | 1+(0.235−0.353i)T+(−27.1−65.5i)T2 |
| 73 | 1+(−5.36+3.58i)T+(27.9−67.4i)T2 |
| 79 | 1+(5.03+12.1i)T+(−55.8+55.8i)T2 |
| 83 | 1+(5.72+0.563i)T+(81.4+16.1i)T2 |
| 89 | 1+(11.5−2.29i)T+(82.2−34.0i)T2 |
| 97 | 1+(−11.4+11.4i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.00351359510391104378748283283, −9.085098782049047997683885341988, −8.704921526851681171072242313483, −7.15813009955398935085324824692, −6.69102700402496921638885125367, −5.13891182665617830344826420794, −4.44072798116961355125387203336, −2.84981566927584436335609728100, −1.64609389713097040880774430690, −0.090100458077449491605872925145,
2.00105791854458422748566614855, 3.97455112719891226674928554772, 5.11837258371480291578513585663, 5.79304260731559426628129461738, 6.60705882839828204942481387597, 7.70874019929076029550518488019, 8.362408178718593608167303583283, 9.553237618461870276661525122179, 10.31514854510217396477083510278, 10.72897608431912757178789624143