L(s) = 1 | + (0.415 + 0.909i)2-s + (−0.654 + 0.755i)4-s + (−0.841 + 0.540i)7-s + (−0.959 − 0.281i)8-s + (0.654 + 0.755i)9-s + (−0.118 + 0.822i)11-s + (−0.841 − 0.540i)14-s + (−0.142 − 0.989i)16-s + (−0.415 + 0.909i)18-s + (−0.797 + 0.234i)22-s + (0.654 − 0.755i)23-s + (0.142 + 0.989i)25-s + (0.142 − 0.989i)28-s + (−0.273 − 0.0801i)29-s + (0.841 − 0.540i)32-s + ⋯ |
L(s) = 1 | + (0.415 + 0.909i)2-s + (−0.654 + 0.755i)4-s + (−0.841 + 0.540i)7-s + (−0.959 − 0.281i)8-s + (0.654 + 0.755i)9-s + (−0.118 + 0.822i)11-s + (−0.841 − 0.540i)14-s + (−0.142 − 0.989i)16-s + (−0.415 + 0.909i)18-s + (−0.797 + 0.234i)22-s + (0.654 − 0.755i)23-s + (0.142 + 0.989i)25-s + (0.142 − 0.989i)28-s + (−0.273 − 0.0801i)29-s + (0.841 − 0.540i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.552 - 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.552 - 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9692037207\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9692037207\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.415 - 0.909i)T \) |
| 7 | \( 1 + (0.841 - 0.540i)T \) |
| 23 | \( 1 + (-0.654 + 0.755i)T \) |
good | 3 | \( 1 + (-0.654 - 0.755i)T^{2} \) |
| 5 | \( 1 + (-0.142 - 0.989i)T^{2} \) |
| 11 | \( 1 + (0.118 - 0.822i)T + (-0.959 - 0.281i)T^{2} \) |
| 13 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 17 | \( 1 + (0.841 + 0.540i)T^{2} \) |
| 19 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 29 | \( 1 + (0.273 + 0.0801i)T + (0.841 + 0.540i)T^{2} \) |
| 31 | \( 1 + (-0.654 + 0.755i)T^{2} \) |
| 37 | \( 1 + (-0.817 + 0.708i)T + (0.142 - 0.989i)T^{2} \) |
| 41 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 43 | \( 1 + (-0.544 + 1.19i)T + (-0.654 - 0.755i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (1.07 + 1.66i)T + (-0.415 + 0.909i)T^{2} \) |
| 59 | \( 1 + (0.415 + 0.909i)T^{2} \) |
| 61 | \( 1 + (-0.654 + 0.755i)T^{2} \) |
| 67 | \( 1 + (-0.273 - 1.89i)T + (-0.959 + 0.281i)T^{2} \) |
| 71 | \( 1 + (-1.80 + 0.258i)T + (0.959 - 0.281i)T^{2} \) |
| 73 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 79 | \( 1 + (0.239 + 0.153i)T + (0.415 + 0.909i)T^{2} \) |
| 83 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 89 | \( 1 + (-0.654 - 0.755i)T^{2} \) |
| 97 | \( 1 + (-0.142 - 0.989i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08385016056744693212739645328, −9.933556515823368701424538350188, −9.292890337571181266263154367733, −8.323330932532848046057096311975, −7.31262133197626150505143323109, −6.76049505301478037882514081212, −5.62177801066749771491521700016, −4.82124785268786954012190456950, −3.74698686969377715478192995498, −2.42310386482465050497776102715,
1.05746836958542969239284626486, 2.88087373688414571315150999048, 3.69370958744439064356073814291, 4.64751082407988580599695098127, 5.97110486470105728297898706401, 6.63882486976685627439062201197, 7.936482723947063389330677220462, 9.214790036010856890530396751708, 9.649651513763944191001627540665, 10.58745533598384527220885477609