L(s) = 1 | + 2.61·2-s + 4.85·4-s + 7.47·8-s + 9.85·16-s + 3.76·17-s − 8.70·19-s − 1.47·23-s + 2.70·31-s + 10.8·32-s + 9.85·34-s − 22.7·38-s − 3.85·46-s − 8.94·47-s − 7·49-s + 14.2·53-s − 14.4·61-s + 7.09·62-s + 8.70·64-s + 18.2·68-s − 42.2·76-s − 14.7·79-s + 11.9·83-s − 7.14·92-s − 23.4·94-s − 18.3·98-s + 37.2·106-s + 17.8·107-s + ⋯ |
L(s) = 1 | + 1.85·2-s + 2.42·4-s + 2.64·8-s + 2.46·16-s + 0.912·17-s − 1.99·19-s − 0.306·23-s + 0.486·31-s + 1.91·32-s + 1.68·34-s − 3.69·38-s − 0.568·46-s − 1.30·47-s − 49-s + 1.95·53-s − 1.84·61-s + 0.900·62-s + 1.08·64-s + 2.21·68-s − 4.84·76-s − 1.65·79-s + 1.31·83-s − 0.745·92-s − 2.41·94-s − 1.85·98-s + 3.62·106-s + 1.72·107-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.400390070 |
L(21) |
≈ |
4.400390070 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1−2.61T+2T2 |
| 7 | 1+7T2 |
| 11 | 1+11T2 |
| 13 | 1+13T2 |
| 17 | 1−3.76T+17T2 |
| 19 | 1+8.70T+19T2 |
| 23 | 1+1.47T+23T2 |
| 29 | 1+29T2 |
| 31 | 1−2.70T+31T2 |
| 37 | 1+37T2 |
| 41 | 1+41T2 |
| 43 | 1+43T2 |
| 47 | 1+8.94T+47T2 |
| 53 | 1−14.2T+53T2 |
| 59 | 1+59T2 |
| 61 | 1+14.4T+61T2 |
| 67 | 1+67T2 |
| 71 | 1+71T2 |
| 73 | 1+73T2 |
| 79 | 1+14.7T+79T2 |
| 83 | 1−11.9T+83T2 |
| 89 | 1+89T2 |
| 97 | 1+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.78038521942540907100259045443, −10.03621504316639370617559622912, −8.558508402508444795291817557582, −7.54860608131123895356374003622, −6.53137444575247663719978475609, −5.92123140089364848706671948637, −4.87442971353380959391737872935, −4.08807451385268501567567573099, −3.08045219779734005587003432611, −1.92860018740434397351518724248,
1.92860018740434397351518724248, 3.08045219779734005587003432611, 4.08807451385268501567567573099, 4.87442971353380959391737872935, 5.92123140089364848706671948637, 6.53137444575247663719978475609, 7.54860608131123895356374003622, 8.558508402508444795291817557582, 10.03621504316639370617559622912, 10.78038521942540907100259045443