L(s) = 1 | + (−0.0777 − 0.00680i)2-s + (−1.54 − 0.788i)3-s + (−1.96 − 0.346i)4-s + (0.114 + 0.0718i)6-s + (1.14 + 0.804i)7-s + (0.301 + 0.0807i)8-s + (1.75 + 2.43i)9-s + (−1.25 + 3.43i)11-s + (2.75 + 2.08i)12-s + (−0.326 − 3.73i)13-s + (−0.0838 − 0.0703i)14-s + (3.72 + 1.35i)16-s + (4.17 − 1.11i)17-s + (−0.120 − 0.201i)18-s + (−1.40 + 0.808i)19-s + ⋯ |
L(s) = 1 | + (−0.0549 − 0.00481i)2-s + (−0.890 − 0.455i)3-s + (−0.981 − 0.173i)4-s + (0.0467 + 0.0293i)6-s + (0.434 + 0.304i)7-s + (0.106 + 0.0285i)8-s + (0.585 + 0.810i)9-s + (−0.377 + 1.03i)11-s + (0.795 + 0.600i)12-s + (−0.0906 − 1.03i)13-s + (−0.0224 − 0.0188i)14-s + (0.931 + 0.338i)16-s + (1.01 − 0.271i)17-s + (−0.0283 − 0.0473i)18-s + (−0.321 + 0.185i)19-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(0.239+0.970i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(0.239+0.970i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
0.239+0.970i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(518,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :1/2), 0.239+0.970i)
|
Particular Values
L(1) |
≈ |
0.579707−0.454184i |
L(21) |
≈ |
0.579707−0.454184i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.54+0.788i)T |
| 5 | 1 |
good | 2 | 1+(0.0777+0.00680i)T+(1.96+0.347i)T2 |
| 7 | 1+(−1.14−0.804i)T+(2.39+6.57i)T2 |
| 11 | 1+(1.25−3.43i)T+(−8.42−7.07i)T2 |
| 13 | 1+(0.326+3.73i)T+(−12.8+2.25i)T2 |
| 17 | 1+(−4.17+1.11i)T+(14.7−8.5i)T2 |
| 19 | 1+(1.40−0.808i)T+(9.5−16.4i)T2 |
| 23 | 1+(3.27+4.67i)T+(−7.86+21.6i)T2 |
| 29 | 1+(−3.26+2.73i)T+(5.03−28.5i)T2 |
| 31 | 1+(−0.336+1.91i)T+(−29.1−10.6i)T2 |
| 37 | 1+(2.07+7.76i)T+(−32.0+18.5i)T2 |
| 41 | 1+(2.08−2.48i)T+(−7.11−40.3i)T2 |
| 43 | 1+(−0.347−0.746i)T+(−27.6+32.9i)T2 |
| 47 | 1+(−0.661+0.945i)T+(−16.0−44.1i)T2 |
| 53 | 1+(−7.50+7.50i)T−53iT2 |
| 59 | 1+(−9.85+3.58i)T+(45.1−37.9i)T2 |
| 61 | 1+(1.72+9.76i)T+(−57.3+20.8i)T2 |
| 67 | 1+(−14.7+1.28i)T+(65.9−11.6i)T2 |
| 71 | 1+(−8.12−4.69i)T+(35.5+61.4i)T2 |
| 73 | 1+(0.0713−0.266i)T+(−63.2−36.5i)T2 |
| 79 | 1+(7.24+8.63i)T+(−13.7+77.7i)T2 |
| 83 | 1+(1.48−17.0i)T+(−81.7−14.4i)T2 |
| 89 | 1+(−6.77−11.7i)T+(−44.5+77.0i)T2 |
| 97 | 1+(12.5−5.86i)T+(62.3−74.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12741143026469135043292850053, −9.834415578569730590264734384831, −8.295846073789354472611533442998, −7.893967903519704512625927035438, −6.72065007079807397105850901226, −5.49954035791701605145569680303, −5.10817658082820341761016621518, −4.01245521322469905794817801710, −2.17397414583837433014630913811, −0.57665717810707641534108718723,
1.12037495610579000663777122904, 3.42755179243139080965063520323, 4.29691131415629793427992537270, 5.19182162308766752335894843316, 5.95735551080234279128041818696, 7.16230689369667475375150585111, 8.233141465649350428823582934399, 8.997555539111953786399193226558, 9.965485626958989713048302001498, 10.54209242583094556517807107822