Properties

Label 2-693-1.1-c5-0-103
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $111.145$
Root an. cond. $10.5425$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 28·4-s + 76·5-s + 49·7-s − 120·8-s + 152·10-s − 121·11-s − 402·13-s + 98·14-s + 656·16-s − 376·17-s + 2.03e3·19-s − 2.12e3·20-s − 242·22-s − 2.10e3·23-s + 2.65e3·25-s − 804·26-s − 1.37e3·28-s − 1.47e3·29-s − 3.87e3·31-s + 5.15e3·32-s − 752·34-s + 3.72e3·35-s − 2.86e3·37-s + 4.07e3·38-s − 9.12e3·40-s − 1.32e3·41-s + ⋯
L(s)  = 1  + 0.353·2-s − 7/8·4-s + 1.35·5-s + 0.377·7-s − 0.662·8-s + 0.480·10-s − 0.301·11-s − 0.659·13-s + 0.133·14-s + 0.640·16-s − 0.315·17-s + 1.29·19-s − 1.18·20-s − 0.106·22-s − 0.827·23-s + 0.848·25-s − 0.233·26-s − 0.330·28-s − 0.326·29-s − 0.724·31-s + 0.889·32-s − 0.111·34-s + 0.513·35-s − 0.343·37-s + 0.457·38-s − 0.901·40-s − 0.123·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(111.145\)
Root analytic conductor: \(10.5425\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - p^{2} T \)
11 \( 1 + p^{2} T \)
good2 \( 1 - p T + p^{5} T^{2} \)
5 \( 1 - 76 T + p^{5} T^{2} \)
13 \( 1 + 402 T + p^{5} T^{2} \)
17 \( 1 + 376 T + p^{5} T^{2} \)
19 \( 1 - 2038 T + p^{5} T^{2} \)
23 \( 1 + 2100 T + p^{5} T^{2} \)
29 \( 1 + 1478 T + p^{5} T^{2} \)
31 \( 1 + 3874 T + p^{5} T^{2} \)
37 \( 1 + 2862 T + p^{5} T^{2} \)
41 \( 1 + 1328 T + p^{5} T^{2} \)
43 \( 1 + 8776 T + p^{5} T^{2} \)
47 \( 1 - 3454 T + p^{5} T^{2} \)
53 \( 1 + 37134 T + p^{5} T^{2} \)
59 \( 1 - 37336 T + p^{5} T^{2} \)
61 \( 1 + 22426 T + p^{5} T^{2} \)
67 \( 1 - 12852 T + p^{5} T^{2} \)
71 \( 1 - 33048 T + p^{5} T^{2} \)
73 \( 1 - 45848 T + p^{5} T^{2} \)
79 \( 1 + 5048 T + p^{5} T^{2} \)
83 \( 1 - 2794 T + p^{5} T^{2} \)
89 \( 1 - 46038 T + p^{5} T^{2} \)
97 \( 1 + 103558 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.607826962889712008631024458928, −8.521030005129515269213434274801, −7.56423329290688435245332178953, −6.34851337584256343523850780716, −5.39471286996938116068563782949, −4.99817638213722120732100595808, −3.71508665144201886550929924348, −2.50824799935553735647479518870, −1.42281568790477107379086027779, 0, 1.42281568790477107379086027779, 2.50824799935553735647479518870, 3.71508665144201886550929924348, 4.99817638213722120732100595808, 5.39471286996938116068563782949, 6.34851337584256343523850780716, 7.56423329290688435245332178953, 8.521030005129515269213434274801, 9.607826962889712008631024458928

Graph of the $Z$-function along the critical line