L(s) = 1 | + (−2.14 + 1.55i)2-s + (1.55 − 4.78i)4-s + (1.38 + 1.00i)5-s + (−0.309 + 0.951i)7-s + (2.48 + 7.64i)8-s − 4.54·10-s + (−2.49 − 2.18i)11-s + (−1.22 + 0.888i)13-s + (−0.819 − 2.52i)14-s + (−9.11 − 6.62i)16-s + (−1.93 − 1.40i)17-s + (1.95 + 6.02i)19-s + (6.97 − 5.06i)20-s + (8.75 + 0.795i)22-s + 5.05·23-s + ⋯ |
L(s) = 1 | + (−1.51 + 1.10i)2-s + (0.777 − 2.39i)4-s + (0.619 + 0.450i)5-s + (−0.116 + 0.359i)7-s + (0.878 + 2.70i)8-s − 1.43·10-s + (−0.752 − 0.658i)11-s + (−0.339 + 0.246i)13-s + (−0.219 − 0.674i)14-s + (−2.27 − 1.65i)16-s + (−0.469 − 0.341i)17-s + (0.448 + 1.38i)19-s + (1.55 − 1.13i)20-s + (1.86 + 0.169i)22-s + 1.05·23-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)(−0.993−0.114i)Λ(2−s)
Λ(s)=(=(693s/2ΓC(s+1/2)L(s)(−0.993−0.114i)Λ(1−s)
Degree: |
2 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
−0.993−0.114i
|
Analytic conductor: |
5.53363 |
Root analytic conductor: |
2.35236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(190,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 693, ( :1/2), −0.993−0.114i)
|
Particular Values
L(1) |
≈ |
0.0277048+0.484239i |
L(21) |
≈ |
0.0277048+0.484239i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(0.309−0.951i)T |
| 11 | 1+(2.49+2.18i)T |
good | 2 | 1+(2.14−1.55i)T+(0.618−1.90i)T2 |
| 5 | 1+(−1.38−1.00i)T+(1.54+4.75i)T2 |
| 13 | 1+(1.22−0.888i)T+(4.01−12.3i)T2 |
| 17 | 1+(1.93+1.40i)T+(5.25+16.1i)T2 |
| 19 | 1+(−1.95−6.02i)T+(−15.3+11.1i)T2 |
| 23 | 1−5.05T+23T2 |
| 29 | 1+(2.57−7.93i)T+(−23.4−17.0i)T2 |
| 31 | 1+(4.88−3.54i)T+(9.57−29.4i)T2 |
| 37 | 1+(2.30−7.10i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−1.55−4.78i)T+(−33.1+24.0i)T2 |
| 43 | 1−2.02T+43T2 |
| 47 | 1+(−1.70−5.25i)T+(−38.0+27.6i)T2 |
| 53 | 1+(−5.04+3.66i)T+(16.3−50.4i)T2 |
| 59 | 1+(3.45−10.6i)T+(−47.7−34.6i)T2 |
| 61 | 1+(11.1+8.11i)T+(18.8+58.0i)T2 |
| 67 | 1−13.6T+67T2 |
| 71 | 1+(11.5+8.42i)T+(21.9+67.5i)T2 |
| 73 | 1+(0.441−1.36i)T+(−59.0−42.9i)T2 |
| 79 | 1+(5.43−3.94i)T+(24.4−75.1i)T2 |
| 83 | 1+(−4.74−3.45i)T+(25.6+78.9i)T2 |
| 89 | 1+16.4T+89T2 |
| 97 | 1+(9.74−7.08i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.56957304148033285749847602883, −9.790096196786967060379435814232, −9.082543208629966329201654054223, −8.331085875664552634015803808735, −7.43749536499936668432399915304, −6.67160343577078547522785343707, −5.82538681281014331393847203639, −5.12586466950483169183236472353, −2.90171120147881524531530674755, −1.52630953184281189018113277747,
0.41648676554171505217232410654, 1.90740630070246445279439066853, 2.77195769962929199992623669793, 4.16170152229583985852166384179, 5.47740694391306011887442459674, 7.12346215186847059051398192834, 7.54576265105133909252225010186, 8.728722856495720963202892042694, 9.349943149260382251145019524893, 9.917892359042027241805552815047