Properties

Label 693.2.m.j.190.1
Level $693$
Weight $2$
Character 693.190
Analytic conductor $5.534$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,2,Mod(64,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 693.m (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.53363286007\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 12 x^{18} - 3 x^{17} + 94 x^{16} - 10 x^{15} + 662 x^{14} - 153 x^{13} + 4638 x^{12} + \cdots + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 231)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 190.1
Root \(-2.14548 - 1.55878i\) of defining polynomial
Character \(\chi\) \(=\) 693.190
Dual form 693.2.m.j.631.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.14548 + 1.55878i) q^{2} +(1.55524 - 4.78653i) q^{4} +(1.38593 + 1.00694i) q^{5} +(-0.309017 + 0.951057i) q^{7} +(2.48543 + 7.64935i) q^{8} -4.54308 q^{10} +(-2.49598 - 2.18405i) q^{11} +(-1.22292 + 0.888505i) q^{13} +(-0.819499 - 2.52216i) q^{14} +(-9.11274 - 6.62079i) q^{16} +(-1.93668 - 1.40708i) q^{17} +(1.95646 + 6.02136i) q^{19} +(6.97521 - 5.06779i) q^{20} +(8.75952 + 0.795152i) q^{22} +5.05885 q^{23} +(-0.638201 - 1.96418i) q^{25} +(1.23877 - 3.81253i) q^{26} +(4.07167 + 2.95824i) q^{28} +(-2.57892 + 7.93708i) q^{29} +(-4.88551 + 3.54953i) q^{31} +13.7855 q^{32} +6.34841 q^{34} +(-1.38593 + 1.00694i) q^{35} +(-2.30953 + 7.10802i) q^{37} +(-13.5835 - 9.86900i) q^{38} +(-4.25780 + 13.1042i) q^{40} +(1.55577 + 4.78817i) q^{41} +2.02506 q^{43} +(-14.3359 + 8.55037i) q^{44} +(-10.8536 + 7.88563i) q^{46} +(1.70895 + 5.25959i) q^{47} +(-0.809017 - 0.587785i) q^{49} +(4.43097 + 3.21929i) q^{50} +(2.35092 + 7.23540i) q^{52} +(5.04607 - 3.66618i) q^{53} +(-1.26005 - 5.54025i) q^{55} -8.04301 q^{56} +(-6.83916 - 21.0488i) q^{58} +(-3.45303 + 10.6273i) q^{59} +(-11.1722 - 8.11711i) q^{61} +(4.94881 - 15.2309i) q^{62} +(-11.3510 + 8.24697i) q^{64} -2.58956 q^{65} +13.6173 q^{67} +(-9.74702 + 7.08162i) q^{68} +(1.40389 - 4.32073i) q^{70} +(-11.5956 - 8.42466i) q^{71} +(-0.441988 + 1.36030i) q^{73} +(-6.12478 - 18.8501i) q^{74} +31.8642 q^{76} +(2.84846 - 1.69891i) q^{77} +(-5.43444 + 3.94835i) q^{79} +(-5.96291 - 18.3520i) q^{80} +(-10.8016 - 7.84779i) q^{82} +(4.74874 + 3.45016i) q^{83} +(-1.26726 - 3.90023i) q^{85} +(-4.34471 + 3.15662i) q^{86} +(10.5030 - 24.5209i) q^{88} -16.4241 q^{89} +(-0.467115 - 1.43763i) q^{91} +(7.86773 - 24.2144i) q^{92} +(-11.8650 - 8.62046i) q^{94} +(-3.35163 + 10.3152i) q^{95} +(-9.74994 + 7.08375i) q^{97} +2.65195 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 14 q^{4} + 5 q^{5} + 5 q^{7} + 9 q^{8} + 12 q^{10} + q^{11} + 13 q^{13} - 24 q^{16} + q^{17} + 10 q^{19} + 46 q^{20} + 26 q^{22} - 8 q^{25} + 53 q^{26} + 4 q^{28} - 3 q^{29} - 13 q^{31} - 82 q^{32}+ \cdots - 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/693\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.14548 + 1.55878i −1.51708 + 1.10222i −0.554170 + 0.832404i \(0.686964\pi\)
−0.962911 + 0.269820i \(0.913036\pi\)
\(3\) 0 0
\(4\) 1.55524 4.78653i 0.777620 2.39327i
\(5\) 1.38593 + 1.00694i 0.619808 + 0.450317i 0.852855 0.522149i \(-0.174869\pi\)
−0.233046 + 0.972466i \(0.574869\pi\)
\(6\) 0 0
\(7\) −0.309017 + 0.951057i −0.116797 + 0.359466i
\(8\) 2.48543 + 7.64935i 0.878731 + 2.70446i
\(9\) 0 0
\(10\) −4.54308 −1.43665
\(11\) −2.49598 2.18405i −0.752566 0.658517i
\(12\) 0 0
\(13\) −1.22292 + 0.888505i −0.339178 + 0.246427i −0.744315 0.667829i \(-0.767224\pi\)
0.405137 + 0.914256i \(0.367224\pi\)
\(14\) −0.819499 2.52216i −0.219020 0.674075i
\(15\) 0 0
\(16\) −9.11274 6.62079i −2.27818 1.65520i
\(17\) −1.93668 1.40708i −0.469713 0.341266i 0.327617 0.944811i \(-0.393755\pi\)
−0.797329 + 0.603544i \(0.793755\pi\)
\(18\) 0 0
\(19\) 1.95646 + 6.02136i 0.448842 + 1.38140i 0.878214 + 0.478267i \(0.158735\pi\)
−0.429372 + 0.903128i \(0.641265\pi\)
\(20\) 6.97521 5.06779i 1.55970 1.13319i
\(21\) 0 0
\(22\) 8.75952 + 0.795152i 1.86754 + 0.169527i
\(23\) 5.05885 1.05484 0.527422 0.849604i \(-0.323159\pi\)
0.527422 + 0.849604i \(0.323159\pi\)
\(24\) 0 0
\(25\) −0.638201 1.96418i −0.127640 0.392836i
\(26\) 1.23877 3.81253i 0.242942 0.747699i
\(27\) 0 0
\(28\) 4.07167 + 2.95824i 0.769473 + 0.559055i
\(29\) −2.57892 + 7.93708i −0.478893 + 1.47388i 0.361743 + 0.932278i \(0.382182\pi\)
−0.840635 + 0.541602i \(0.817818\pi\)
\(30\) 0 0
\(31\) −4.88551 + 3.54953i −0.877463 + 0.637514i −0.932579 0.360966i \(-0.882447\pi\)
0.0551159 + 0.998480i \(0.482447\pi\)
\(32\) 13.7855 2.43696
\(33\) 0 0
\(34\) 6.34841 1.08874
\(35\) −1.38593 + 1.00694i −0.234265 + 0.170204i
\(36\) 0 0
\(37\) −2.30953 + 7.10802i −0.379685 + 1.16855i 0.560578 + 0.828102i \(0.310579\pi\)
−0.940263 + 0.340449i \(0.889421\pi\)
\(38\) −13.5835 9.86900i −2.20354 1.60096i
\(39\) 0 0
\(40\) −4.25780 + 13.1042i −0.673218 + 2.07195i
\(41\) 1.55577 + 4.78817i 0.242970 + 0.747786i 0.995964 + 0.0897576i \(0.0286092\pi\)
−0.752993 + 0.658028i \(0.771391\pi\)
\(42\) 0 0
\(43\) 2.02506 0.308818 0.154409 0.988007i \(-0.450653\pi\)
0.154409 + 0.988007i \(0.450653\pi\)
\(44\) −14.3359 + 8.55037i −2.16122 + 1.28902i
\(45\) 0 0
\(46\) −10.8536 + 7.88563i −1.60028 + 1.16267i
\(47\) 1.70895 + 5.25959i 0.249275 + 0.767190i 0.994904 + 0.100829i \(0.0321494\pi\)
−0.745629 + 0.666362i \(0.767851\pi\)
\(48\) 0 0
\(49\) −0.809017 0.587785i −0.115574 0.0839693i
\(50\) 4.43097 + 3.21929i 0.626634 + 0.455276i
\(51\) 0 0
\(52\) 2.35092 + 7.23540i 0.326014 + 1.00337i
\(53\) 5.04607 3.66618i 0.693131 0.503589i −0.184557 0.982822i \(-0.559085\pi\)
0.877688 + 0.479233i \(0.159085\pi\)
\(54\) 0 0
\(55\) −1.26005 5.54025i −0.169905 0.747047i
\(56\) −8.04301 −1.07479
\(57\) 0 0
\(58\) −6.83916 21.0488i −0.898026 2.76384i
\(59\) −3.45303 + 10.6273i −0.449546 + 1.38356i 0.427874 + 0.903838i \(0.359263\pi\)
−0.877420 + 0.479723i \(0.840737\pi\)
\(60\) 0 0
\(61\) −11.1722 8.11711i −1.43046 1.03929i −0.989931 0.141550i \(-0.954791\pi\)
−0.440527 0.897739i \(-0.645209\pi\)
\(62\) 4.94881 15.2309i 0.628499 1.93432i
\(63\) 0 0
\(64\) −11.3510 + 8.24697i −1.41887 + 1.03087i
\(65\) −2.58956 −0.321195
\(66\) 0 0
\(67\) 13.6173 1.66362 0.831811 0.555059i \(-0.187304\pi\)
0.831811 + 0.555059i \(0.187304\pi\)
\(68\) −9.74702 + 7.08162i −1.18200 + 0.858773i
\(69\) 0 0
\(70\) 1.40389 4.32073i 0.167797 0.516426i
\(71\) −11.5956 8.42466i −1.37614 0.999823i −0.997229 0.0743897i \(-0.976299\pi\)
−0.378910 0.925434i \(-0.623701\pi\)
\(72\) 0 0
\(73\) −0.441988 + 1.36030i −0.0517308 + 0.159211i −0.973584 0.228327i \(-0.926674\pi\)
0.921854 + 0.387538i \(0.126674\pi\)
\(74\) −6.12478 18.8501i −0.711991 2.19128i
\(75\) 0 0
\(76\) 31.8642 3.65508
\(77\) 2.84846 1.69891i 0.324612 0.193609i
\(78\) 0 0
\(79\) −5.43444 + 3.94835i −0.611423 + 0.444225i −0.849915 0.526920i \(-0.823347\pi\)
0.238492 + 0.971144i \(0.423347\pi\)
\(80\) −5.96291 18.3520i −0.666674 2.05181i
\(81\) 0 0
\(82\) −10.8016 7.84779i −1.19283 0.866644i
\(83\) 4.74874 + 3.45016i 0.521242 + 0.378705i 0.817072 0.576536i \(-0.195596\pi\)
−0.295829 + 0.955241i \(0.595596\pi\)
\(84\) 0 0
\(85\) −1.26726 3.90023i −0.137454 0.423039i
\(86\) −4.34471 + 3.15662i −0.468502 + 0.340387i
\(87\) 0 0
\(88\) 10.5030 24.5209i 1.11963 2.61394i
\(89\) −16.4241 −1.74095 −0.870473 0.492215i \(-0.836187\pi\)
−0.870473 + 0.492215i \(0.836187\pi\)
\(90\) 0 0
\(91\) −0.467115 1.43763i −0.0489669 0.150705i
\(92\) 7.86773 24.2144i 0.820267 2.52452i
\(93\) 0 0
\(94\) −11.8650 8.62046i −1.22379 0.889133i
\(95\) −3.35163 + 10.3152i −0.343869 + 1.05832i
\(96\) 0 0
\(97\) −9.74994 + 7.08375i −0.989957 + 0.719246i −0.959912 0.280303i \(-0.909565\pi\)
−0.0300450 + 0.999549i \(0.509565\pi\)
\(98\) 2.65195 0.267888
\(99\) 0 0
\(100\) −10.3942 −1.03942
\(101\) −4.32699 + 3.14374i −0.430551 + 0.312814i −0.781869 0.623442i \(-0.785734\pi\)
0.351318 + 0.936256i \(0.385734\pi\)
\(102\) 0 0
\(103\) 2.89788 8.91875i 0.285536 0.878791i −0.700701 0.713455i \(-0.747129\pi\)
0.986237 0.165336i \(-0.0528707\pi\)
\(104\) −9.83597 7.14625i −0.964496 0.700748i
\(105\) 0 0
\(106\) −5.11145 + 15.7314i −0.496468 + 1.52797i
\(107\) 3.76107 + 11.5754i 0.363596 + 1.11903i 0.950856 + 0.309635i \(0.100207\pi\)
−0.587259 + 0.809399i \(0.699793\pi\)
\(108\) 0 0
\(109\) −6.31429 −0.604799 −0.302399 0.953181i \(-0.597788\pi\)
−0.302399 + 0.953181i \(0.597788\pi\)
\(110\) 11.3394 + 9.92233i 1.08117 + 0.946057i
\(111\) 0 0
\(112\) 9.11274 6.62079i 0.861073 0.625606i
\(113\) −1.04067 3.20285i −0.0978978 0.301298i 0.890100 0.455765i \(-0.150634\pi\)
−0.987998 + 0.154466i \(0.950634\pi\)
\(114\) 0 0
\(115\) 7.01123 + 5.09396i 0.653801 + 0.475014i
\(116\) 33.9803 + 24.6881i 3.15499 + 2.29224i
\(117\) 0 0
\(118\) −9.15728 28.1832i −0.842996 2.59447i
\(119\) 1.93668 1.40708i 0.177535 0.128987i
\(120\) 0 0
\(121\) 1.45982 + 10.9027i 0.132711 + 0.991155i
\(122\) 36.6225 3.31565
\(123\) 0 0
\(124\) 9.39181 + 28.9050i 0.843410 + 2.59575i
\(125\) 3.74020 11.5112i 0.334534 1.02959i
\(126\) 0 0
\(127\) 0.901033 + 0.654639i 0.0799537 + 0.0580898i 0.627044 0.778984i \(-0.284265\pi\)
−0.547090 + 0.837074i \(0.684265\pi\)
\(128\) 2.97814 9.16578i 0.263233 0.810149i
\(129\) 0 0
\(130\) 5.55584 4.03655i 0.487279 0.354029i
\(131\) 14.3843 1.25676 0.628379 0.777907i \(-0.283719\pi\)
0.628379 + 0.777907i \(0.283719\pi\)
\(132\) 0 0
\(133\) −6.33123 −0.548988
\(134\) −29.2157 + 21.2264i −2.52385 + 1.83368i
\(135\) 0 0
\(136\) 5.94977 18.3115i 0.510188 1.57020i
\(137\) 2.20692 + 1.60342i 0.188550 + 0.136990i 0.678056 0.735010i \(-0.262823\pi\)
−0.489506 + 0.872000i \(0.662823\pi\)
\(138\) 0 0
\(139\) 0.109127 0.335860i 0.00925607 0.0284872i −0.946322 0.323226i \(-0.895233\pi\)
0.955578 + 0.294739i \(0.0952326\pi\)
\(140\) 2.66429 + 8.19985i 0.225174 + 0.693014i
\(141\) 0 0
\(142\) 38.0102 3.18974
\(143\) 4.99293 + 0.453237i 0.417530 + 0.0379016i
\(144\) 0 0
\(145\) −11.5664 + 8.40346i −0.960535 + 0.697869i
\(146\) −1.17213 3.60745i −0.0970064 0.298555i
\(147\) 0 0
\(148\) 30.4309 + 22.1093i 2.50140 + 1.81738i
\(149\) −0.413730 0.300593i −0.0338941 0.0246255i 0.570709 0.821152i \(-0.306668\pi\)
−0.604603 + 0.796527i \(0.706668\pi\)
\(150\) 0 0
\(151\) 0.302146 + 0.929908i 0.0245883 + 0.0756749i 0.962598 0.270935i \(-0.0873328\pi\)
−0.938009 + 0.346610i \(0.887333\pi\)
\(152\) −41.1969 + 29.9313i −3.34151 + 2.42775i
\(153\) 0 0
\(154\) −3.46308 + 8.08508i −0.279063 + 0.651515i
\(155\) −10.3452 −0.830942
\(156\) 0 0
\(157\) −1.01655 3.12862i −0.0811296 0.249691i 0.902262 0.431189i \(-0.141906\pi\)
−0.983391 + 0.181497i \(0.941906\pi\)
\(158\) 5.50485 16.9422i 0.437943 1.34785i
\(159\) 0 0
\(160\) 19.1058 + 13.8812i 1.51044 + 1.09740i
\(161\) −1.56327 + 4.81125i −0.123203 + 0.379180i
\(162\) 0 0
\(163\) −2.81720 + 2.04682i −0.220660 + 0.160319i −0.692624 0.721299i \(-0.743545\pi\)
0.471964 + 0.881618i \(0.343545\pi\)
\(164\) 25.3383 1.97859
\(165\) 0 0
\(166\) −15.5664 −1.20818
\(167\) −3.70106 + 2.68898i −0.286397 + 0.208080i −0.721703 0.692203i \(-0.756640\pi\)
0.435306 + 0.900283i \(0.356640\pi\)
\(168\) 0 0
\(169\) −3.31112 + 10.1906i −0.254702 + 0.783892i
\(170\) 8.79848 + 6.39247i 0.674812 + 0.490280i
\(171\) 0 0
\(172\) 3.14945 9.69301i 0.240143 0.739085i
\(173\) −1.76904 5.44456i −0.134498 0.413942i 0.861014 0.508582i \(-0.169830\pi\)
−0.995512 + 0.0946399i \(0.969830\pi\)
\(174\) 0 0
\(175\) 2.06526 0.156119
\(176\) 8.28505 + 36.4281i 0.624509 + 2.74587i
\(177\) 0 0
\(178\) 35.2374 25.6015i 2.64116 1.91891i
\(179\) −0.913765 2.81228i −0.0682980 0.210200i 0.911082 0.412224i \(-0.135248\pi\)
−0.979380 + 0.202024i \(0.935248\pi\)
\(180\) 0 0
\(181\) 7.60479 + 5.52520i 0.565260 + 0.410685i 0.833380 0.552700i \(-0.186403\pi\)
−0.268121 + 0.963385i \(0.586403\pi\)
\(182\) 3.24313 + 2.35627i 0.240397 + 0.174659i
\(183\) 0 0
\(184\) 12.5734 + 38.6969i 0.926923 + 2.85278i
\(185\) −10.3582 + 7.52567i −0.761550 + 0.553299i
\(186\) 0 0
\(187\) 1.76077 + 7.74184i 0.128760 + 0.566139i
\(188\) 27.8330 2.02993
\(189\) 0 0
\(190\) −8.88836 27.3555i −0.644829 1.98458i
\(191\) 2.84577 8.75838i 0.205913 0.633734i −0.793762 0.608229i \(-0.791880\pi\)
0.999675 0.0255056i \(-0.00811957\pi\)
\(192\) 0 0
\(193\) 1.20723 + 0.877101i 0.0868980 + 0.0631351i 0.630386 0.776282i \(-0.282897\pi\)
−0.543488 + 0.839417i \(0.682897\pi\)
\(194\) 9.87627 30.3960i 0.709075 2.18231i
\(195\) 0 0
\(196\) −4.07167 + 2.95824i −0.290834 + 0.211303i
\(197\) −3.37718 −0.240614 −0.120307 0.992737i \(-0.538388\pi\)
−0.120307 + 0.992737i \(0.538388\pi\)
\(198\) 0 0
\(199\) 27.8114 1.97150 0.985750 0.168215i \(-0.0538002\pi\)
0.985750 + 0.168215i \(0.0538002\pi\)
\(200\) 13.4385 9.76365i 0.950246 0.690394i
\(201\) 0 0
\(202\) 4.38305 13.4896i 0.308390 0.949127i
\(203\) −6.75169 4.90539i −0.473876 0.344291i
\(204\) 0 0
\(205\) −2.66520 + 8.20264i −0.186146 + 0.572897i
\(206\) 7.68504 + 23.6521i 0.535442 + 1.64792i
\(207\) 0 0
\(208\) 17.0268 1.18059
\(209\) 8.26769 19.3022i 0.571888 1.33516i
\(210\) 0 0
\(211\) 19.4219 14.1109i 1.33706 0.971432i 0.337516 0.941320i \(-0.390413\pi\)
0.999547 0.0301125i \(-0.00958657\pi\)
\(212\) −9.70047 29.8550i −0.666231 2.05045i
\(213\) 0 0
\(214\) −26.1127 18.9720i −1.78503 1.29690i
\(215\) 2.80659 + 2.03911i 0.191408 + 0.139066i
\(216\) 0 0
\(217\) −1.86610 5.74326i −0.126679 0.389878i
\(218\) 13.5471 9.84258i 0.917529 0.666624i
\(219\) 0 0
\(220\) −28.4783 2.58514i −1.92001 0.174290i
\(221\) 3.61860 0.243413
\(222\) 0 0
\(223\) 7.05109 + 21.7010i 0.472176 + 1.45321i 0.849729 + 0.527220i \(0.176766\pi\)
−0.377553 + 0.925988i \(0.623234\pi\)
\(224\) −4.25995 + 13.1108i −0.284630 + 0.876002i
\(225\) 0 0
\(226\) 7.22526 + 5.24946i 0.480617 + 0.349189i
\(227\) −4.45128 + 13.6996i −0.295442 + 0.909277i 0.687630 + 0.726061i \(0.258651\pi\)
−0.983073 + 0.183217i \(0.941349\pi\)
\(228\) 0 0
\(229\) 3.06915 2.22986i 0.202815 0.147354i −0.481742 0.876313i \(-0.659996\pi\)
0.684557 + 0.728959i \(0.259996\pi\)
\(230\) −22.9828 −1.51544
\(231\) 0 0
\(232\) −67.1233 −4.40686
\(233\) 22.2354 16.1549i 1.45669 1.05834i 0.472476 0.881343i \(-0.343360\pi\)
0.984211 0.177001i \(-0.0566397\pi\)
\(234\) 0 0
\(235\) −2.92761 + 9.01025i −0.190976 + 0.587764i
\(236\) 45.4978 + 33.0561i 2.96166 + 2.15177i
\(237\) 0 0
\(238\) −1.96177 + 6.03770i −0.127163 + 0.391366i
\(239\) −3.47135 10.6837i −0.224543 0.691072i −0.998338 0.0576354i \(-0.981644\pi\)
0.773795 0.633436i \(-0.218356\pi\)
\(240\) 0 0
\(241\) 14.7496 0.950105 0.475052 0.879958i \(-0.342429\pi\)
0.475052 + 0.879958i \(0.342429\pi\)
\(242\) −20.1269 21.1159i −1.29381 1.35738i
\(243\) 0 0
\(244\) −56.2283 + 40.8523i −3.59965 + 2.61530i
\(245\) −0.529379 1.62926i −0.0338208 0.104090i
\(246\) 0 0
\(247\) −7.74261 5.62533i −0.492650 0.357931i
\(248\) −39.2942 28.5489i −2.49518 1.81286i
\(249\) 0 0
\(250\) 9.91885 + 30.5271i 0.627323 + 1.93070i
\(251\) 6.16417 4.47853i 0.389079 0.282682i −0.375999 0.926620i \(-0.622700\pi\)
0.765078 + 0.643938i \(0.222700\pi\)
\(252\) 0 0
\(253\) −12.6268 11.0488i −0.793839 0.694632i
\(254\) −2.95358 −0.185324
\(255\) 0 0
\(256\) −0.773480 2.38053i −0.0483425 0.148783i
\(257\) 0.0894241 0.275219i 0.00557812 0.0171677i −0.948229 0.317588i \(-0.897127\pi\)
0.953807 + 0.300421i \(0.0971270\pi\)
\(258\) 0 0
\(259\) −6.04644 4.39299i −0.375707 0.272967i
\(260\) −4.02738 + 12.3950i −0.249768 + 0.768706i
\(261\) 0 0
\(262\) −30.8611 + 22.4219i −1.90660 + 1.38523i
\(263\) −12.3251 −0.759998 −0.379999 0.924987i \(-0.624076\pi\)
−0.379999 + 0.924987i \(0.624076\pi\)
\(264\) 0 0
\(265\) 10.6851 0.656383
\(266\) 13.5835 9.86900i 0.832858 0.605107i
\(267\) 0 0
\(268\) 21.1782 65.1798i 1.29367 3.98149i
\(269\) 10.2349 + 7.43611i 0.624034 + 0.453388i 0.854328 0.519734i \(-0.173969\pi\)
−0.230294 + 0.973121i \(0.573969\pi\)
\(270\) 0 0
\(271\) 3.32200 10.2241i 0.201797 0.621068i −0.798033 0.602614i \(-0.794126\pi\)
0.999830 0.0184533i \(-0.00587420\pi\)
\(272\) 8.33245 + 25.6447i 0.505229 + 1.55494i
\(273\) 0 0
\(274\) −7.23428 −0.437039
\(275\) −2.69694 + 6.29642i −0.162632 + 0.379688i
\(276\) 0 0
\(277\) 4.92607 3.57900i 0.295979 0.215041i −0.429878 0.902887i \(-0.641443\pi\)
0.725857 + 0.687846i \(0.241443\pi\)
\(278\) 0.289401 + 0.890685i 0.0173571 + 0.0534197i
\(279\) 0 0
\(280\) −11.1471 8.09882i −0.666165 0.483997i
\(281\) −6.96666 5.06158i −0.415596 0.301948i 0.360267 0.932849i \(-0.382686\pi\)
−0.775864 + 0.630901i \(0.782686\pi\)
\(282\) 0 0
\(283\) 0.987485 + 3.03917i 0.0586999 + 0.180660i 0.976107 0.217290i \(-0.0697218\pi\)
−0.917407 + 0.397950i \(0.869722\pi\)
\(284\) −58.3588 + 42.4001i −3.46296 + 2.51599i
\(285\) 0 0
\(286\) −11.4187 + 6.81047i −0.675202 + 0.402711i
\(287\) −5.03457 −0.297182
\(288\) 0 0
\(289\) −3.48244 10.7179i −0.204850 0.630462i
\(290\) 11.7162 36.0588i 0.688000 2.11745i
\(291\) 0 0
\(292\) 5.82373 + 4.23119i 0.340808 + 0.247611i
\(293\) 2.64263 8.13317i 0.154384 0.475145i −0.843714 0.536793i \(-0.819636\pi\)
0.998098 + 0.0616479i \(0.0196356\pi\)
\(294\) 0 0
\(295\) −15.4868 + 11.2518i −0.901673 + 0.655104i
\(296\) −60.1119 −3.49393
\(297\) 0 0
\(298\) 1.35621 0.0785629
\(299\) −6.18658 + 4.49481i −0.357779 + 0.259942i
\(300\) 0 0
\(301\) −0.625777 + 1.92594i −0.0360692 + 0.111010i
\(302\) −2.09777 1.52412i −0.120713 0.0877031i
\(303\) 0 0
\(304\) 22.0375 67.8244i 1.26394 3.89000i
\(305\) −7.31054 22.4995i −0.418600 1.28832i
\(306\) 0 0
\(307\) −3.49789 −0.199635 −0.0998176 0.995006i \(-0.531826\pi\)
−0.0998176 + 0.995006i \(0.531826\pi\)
\(308\) −3.70185 16.2765i −0.210932 0.927437i
\(309\) 0 0
\(310\) 22.1953 16.1258i 1.26061 0.915884i
\(311\) 1.14039 + 3.50976i 0.0646656 + 0.199020i 0.978169 0.207811i \(-0.0666338\pi\)
−0.913503 + 0.406831i \(0.866634\pi\)
\(312\) 0 0
\(313\) 21.2482 + 15.4377i 1.20102 + 0.872590i 0.994384 0.105828i \(-0.0337494\pi\)
0.206633 + 0.978419i \(0.433749\pi\)
\(314\) 7.05782 + 5.12780i 0.398296 + 0.289379i
\(315\) 0 0
\(316\) 10.4471 + 32.1528i 0.587694 + 1.80874i
\(317\) 10.5821 7.68834i 0.594350 0.431820i −0.249519 0.968370i \(-0.580273\pi\)
0.843869 + 0.536550i \(0.180273\pi\)
\(318\) 0 0
\(319\) 23.7719 14.1783i 1.33097 0.793833i
\(320\) −24.0359 −1.34365
\(321\) 0 0
\(322\) −4.14572 12.7592i −0.231032 0.711044i
\(323\) 4.68349 14.4143i 0.260597 0.802034i
\(324\) 0 0
\(325\) 2.52565 + 1.83500i 0.140098 + 0.101787i
\(326\) 2.85370 8.78278i 0.158052 0.486433i
\(327\) 0 0
\(328\) −32.7596 + 23.8013i −1.80885 + 1.31420i
\(329\) −5.53026 −0.304893
\(330\) 0 0
\(331\) 7.93676 0.436244 0.218122 0.975922i \(-0.430007\pi\)
0.218122 + 0.975922i \(0.430007\pi\)
\(332\) 23.8998 17.3642i 1.31167 0.952984i
\(333\) 0 0
\(334\) 3.74902 11.5383i 0.205137 0.631347i
\(335\) 18.8727 + 13.7118i 1.03113 + 0.749157i
\(336\) 0 0
\(337\) 3.09034 9.51109i 0.168342 0.518102i −0.830925 0.556384i \(-0.812188\pi\)
0.999267 + 0.0382818i \(0.0121884\pi\)
\(338\) −8.78095 27.0250i −0.477621 1.46997i
\(339\) 0 0
\(340\) −20.6395 −1.11933
\(341\) 19.9465 + 1.81066i 1.08016 + 0.0980526i
\(342\) 0 0
\(343\) 0.809017 0.587785i 0.0436828 0.0317374i
\(344\) 5.03313 + 15.4904i 0.271368 + 0.835185i
\(345\) 0 0
\(346\) 12.2823 + 8.92361i 0.660301 + 0.479736i
\(347\) −4.37559 3.17905i −0.234894 0.170661i 0.464111 0.885777i \(-0.346374\pi\)
−0.699006 + 0.715116i \(0.746374\pi\)
\(348\) 0 0
\(349\) −8.81659 27.1347i −0.471941 1.45249i −0.850039 0.526720i \(-0.823422\pi\)
0.378098 0.925766i \(-0.376578\pi\)
\(350\) −4.43097 + 3.21929i −0.236845 + 0.172078i
\(351\) 0 0
\(352\) −34.4083 30.1083i −1.83397 1.60478i
\(353\) 19.2226 1.02312 0.511559 0.859248i \(-0.329068\pi\)
0.511559 + 0.859248i \(0.329068\pi\)
\(354\) 0 0
\(355\) −7.58754 23.3520i −0.402705 1.23940i
\(356\) −25.5433 + 78.6143i −1.35379 + 4.16655i
\(357\) 0 0
\(358\) 6.34419 + 4.60932i 0.335301 + 0.243610i
\(359\) −6.90739 + 21.2588i −0.364558 + 1.12199i 0.585699 + 0.810529i \(0.300820\pi\)
−0.950257 + 0.311466i \(0.899180\pi\)
\(360\) 0 0
\(361\) −17.0577 + 12.3932i −0.897776 + 0.652272i
\(362\) −24.9285 −1.31021
\(363\) 0 0
\(364\) −7.60775 −0.398754
\(365\) −1.98231 + 1.44023i −0.103759 + 0.0753851i
\(366\) 0 0
\(367\) −7.24485 + 22.2974i −0.378178 + 1.16391i 0.563131 + 0.826368i \(0.309597\pi\)
−0.941309 + 0.337545i \(0.890403\pi\)
\(368\) −46.1000 33.4936i −2.40313 1.74597i
\(369\) 0 0
\(370\) 10.4924 32.2923i 0.545474 1.67880i
\(371\) 1.92743 + 5.93201i 0.100067 + 0.307975i
\(372\) 0 0
\(373\) −33.4536 −1.73216 −0.866082 0.499903i \(-0.833369\pi\)
−0.866082 + 0.499903i \(0.833369\pi\)
\(374\) −15.8455 13.8653i −0.819352 0.716956i
\(375\) 0 0
\(376\) −35.9850 + 26.1447i −1.85579 + 1.34831i
\(377\) −3.89833 11.9978i −0.200774 0.617919i
\(378\) 0 0
\(379\) 14.8694 + 10.8032i 0.763788 + 0.554925i 0.900070 0.435745i \(-0.143515\pi\)
−0.136282 + 0.990670i \(0.543515\pi\)
\(380\) 44.1617 + 32.0853i 2.26545 + 1.64594i
\(381\) 0 0
\(382\) 7.54685 + 23.2268i 0.386131 + 1.18839i
\(383\) 17.2647 12.5435i 0.882185 0.640945i −0.0516438 0.998666i \(-0.516446\pi\)
0.933829 + 0.357721i \(0.116446\pi\)
\(384\) 0 0
\(385\) 5.65847 + 0.513652i 0.288382 + 0.0261781i
\(386\) −3.95728 −0.201420
\(387\) 0 0
\(388\) 18.7431 + 57.6854i 0.951537 + 2.92853i
\(389\) −4.79639 + 14.7618i −0.243187 + 0.748452i 0.752743 + 0.658315i \(0.228730\pi\)
−0.995929 + 0.0901368i \(0.971270\pi\)
\(390\) 0 0
\(391\) −9.79735 7.11819i −0.495474 0.359983i
\(392\) 2.48543 7.64935i 0.125533 0.386351i
\(393\) 0 0
\(394\) 7.24567 5.26429i 0.365031 0.265211i
\(395\) −11.5075 −0.579007
\(396\) 0 0
\(397\) 21.4777 1.07794 0.538968 0.842326i \(-0.318815\pi\)
0.538968 + 0.842326i \(0.318815\pi\)
\(398\) −59.6688 + 43.3519i −2.99093 + 2.17303i
\(399\) 0 0
\(400\) −7.18867 + 22.1245i −0.359434 + 1.10622i
\(401\) 7.18493 + 5.22015i 0.358798 + 0.260682i 0.752551 0.658534i \(-0.228823\pi\)
−0.393753 + 0.919216i \(0.628823\pi\)
\(402\) 0 0
\(403\) 2.82082 8.68160i 0.140515 0.432461i
\(404\) 8.31812 + 25.6005i 0.413842 + 1.27367i
\(405\) 0 0
\(406\) 22.1320 1.09839
\(407\) 21.2888 12.6973i 1.05525 0.629382i
\(408\) 0 0
\(409\) −4.41542 + 3.20799i −0.218329 + 0.158625i −0.691574 0.722306i \(-0.743082\pi\)
0.473245 + 0.880931i \(0.343082\pi\)
\(410\) −7.06799 21.7530i −0.349063 1.07431i
\(411\) 0 0
\(412\) −38.1830 27.7416i −1.88114 1.36673i
\(413\) −9.04015 6.56805i −0.444837 0.323193i
\(414\) 0 0
\(415\) 3.10733 + 9.56339i 0.152533 + 0.469448i
\(416\) −16.8586 + 12.2485i −0.826561 + 0.600531i
\(417\) 0 0
\(418\) 12.3497 + 54.2999i 0.604046 + 2.65590i
\(419\) −19.9805 −0.976114 −0.488057 0.872812i \(-0.662294\pi\)
−0.488057 + 0.872812i \(0.662294\pi\)
\(420\) 0 0
\(421\) −8.74895 26.9265i −0.426398 1.31232i −0.901649 0.432468i \(-0.857643\pi\)
0.475252 0.879850i \(-0.342357\pi\)
\(422\) −19.6736 + 60.5491i −0.957695 + 2.94748i
\(423\) 0 0
\(424\) 40.5856 + 29.4871i 1.97101 + 1.43202i
\(425\) −1.52777 + 4.70198i −0.0741075 + 0.228079i
\(426\) 0 0
\(427\) 11.1722 8.11711i 0.540663 0.392814i
\(428\) 61.2553 2.96089
\(429\) 0 0
\(430\) −9.20000 −0.443664
\(431\) 25.6982 18.6708i 1.23784 0.899342i 0.240386 0.970677i \(-0.422726\pi\)
0.997452 + 0.0713351i \(0.0227260\pi\)
\(432\) 0 0
\(433\) −4.06856 + 12.5217i −0.195523 + 0.601757i 0.804447 + 0.594024i \(0.202462\pi\)
−0.999970 + 0.00773305i \(0.997538\pi\)
\(434\) 12.9561 + 9.41319i 0.621915 + 0.451848i
\(435\) 0 0
\(436\) −9.82023 + 30.2235i −0.470304 + 1.44745i
\(437\) 9.89744 + 30.4612i 0.473459 + 1.45716i
\(438\) 0 0
\(439\) −9.81161 −0.468283 −0.234141 0.972203i \(-0.575228\pi\)
−0.234141 + 0.972203i \(0.575228\pi\)
\(440\) 39.2476 23.4085i 1.87106 1.11595i
\(441\) 0 0
\(442\) −7.76362 + 5.64060i −0.369278 + 0.268296i
\(443\) −0.767950 2.36351i −0.0364864 0.112294i 0.931155 0.364625i \(-0.118803\pi\)
−0.967641 + 0.252331i \(0.918803\pi\)
\(444\) 0 0
\(445\) −22.7627 16.5380i −1.07905 0.783978i
\(446\) −48.9551 35.5679i −2.31809 1.68419i
\(447\) 0 0
\(448\) −4.33569 13.3439i −0.204842 0.630439i
\(449\) −12.6285 + 9.17515i −0.595976 + 0.433002i −0.844448 0.535637i \(-0.820072\pi\)
0.248472 + 0.968639i \(0.420072\pi\)
\(450\) 0 0
\(451\) 6.57444 15.3490i 0.309578 0.722758i
\(452\) −16.9490 −0.797215
\(453\) 0 0
\(454\) −11.8046 36.3308i −0.554017 1.70509i
\(455\) 0.800218 2.46282i 0.0375148 0.115459i
\(456\) 0 0
\(457\) −11.0554 8.03223i −0.517150 0.375732i 0.298379 0.954447i \(-0.403554\pi\)
−0.815529 + 0.578716i \(0.803554\pi\)
\(458\) −3.10891 + 9.56824i −0.145270 + 0.447095i
\(459\) 0 0
\(460\) 35.2865 25.6372i 1.64524 1.19534i
\(461\) −18.6545 −0.868825 −0.434412 0.900714i \(-0.643044\pi\)
−0.434412 + 0.900714i \(0.643044\pi\)
\(462\) 0 0
\(463\) −18.5697 −0.863006 −0.431503 0.902111i \(-0.642017\pi\)
−0.431503 + 0.902111i \(0.642017\pi\)
\(464\) 76.0508 55.2541i 3.53057 2.56511i
\(465\) 0 0
\(466\) −22.5234 + 69.3200i −1.04338 + 3.21119i
\(467\) 28.2815 + 20.5477i 1.30871 + 0.950835i 1.00000 0.000321071i \(-0.000102200\pi\)
0.308712 + 0.951156i \(0.400102\pi\)
\(468\) 0 0
\(469\) −4.20799 + 12.9509i −0.194307 + 0.598015i
\(470\) −7.76388 23.8948i −0.358121 1.10218i
\(471\) 0 0
\(472\) −89.8745 −4.13681
\(473\) −5.05450 4.42283i −0.232406 0.203362i
\(474\) 0 0
\(475\) 10.5784 7.68568i 0.485372 0.352643i
\(476\) −3.72303 11.4583i −0.170645 0.525191i
\(477\) 0 0
\(478\) 24.1012 + 17.5106i 1.10236 + 0.800915i
\(479\) 32.8011 + 23.8314i 1.49872 + 1.08888i 0.970888 + 0.239532i \(0.0769942\pi\)
0.527830 + 0.849350i \(0.323006\pi\)
\(480\) 0 0
\(481\) −3.49113 10.7446i −0.159182 0.489911i
\(482\) −31.6449 + 22.9914i −1.44139 + 1.04723i
\(483\) 0 0
\(484\) 54.4565 + 9.96881i 2.47530 + 0.453128i
\(485\) −20.6457 −0.937472
\(486\) 0 0
\(487\) 4.18930 + 12.8933i 0.189835 + 0.584253i 0.999998 0.00195204i \(-0.000621354\pi\)
−0.810163 + 0.586205i \(0.800621\pi\)
\(488\) 34.3229 105.635i 1.55372 4.78187i
\(489\) 0 0
\(490\) 3.67543 + 2.67036i 0.166039 + 0.120634i
\(491\) 7.24935 22.3112i 0.327158 1.00689i −0.643298 0.765616i \(-0.722435\pi\)
0.970457 0.241275i \(-0.0775655\pi\)
\(492\) 0 0
\(493\) 16.1626 11.7428i 0.727927 0.528870i
\(494\) 25.3802 1.14191
\(495\) 0 0
\(496\) 68.0211 3.05424
\(497\) 11.5956 8.42466i 0.520132 0.377898i
\(498\) 0 0
\(499\) 5.34216 16.4415i 0.239148 0.736021i −0.757396 0.652956i \(-0.773529\pi\)
0.996544 0.0830658i \(-0.0264712\pi\)
\(500\) −49.2817 35.8052i −2.20394 1.60126i
\(501\) 0 0
\(502\) −6.24403 + 19.2172i −0.278685 + 0.857704i
\(503\) −1.00304 3.08705i −0.0447235 0.137645i 0.926201 0.377029i \(-0.123054\pi\)
−0.970925 + 0.239384i \(0.923054\pi\)
\(504\) 0 0
\(505\) −9.16247 −0.407724
\(506\) 44.3131 + 4.02255i 1.96996 + 0.178824i
\(507\) 0 0
\(508\) 4.53477 3.29470i 0.201198 0.146179i
\(509\) 4.82082 + 14.8370i 0.213679 + 0.657636i 0.999245 + 0.0388581i \(0.0123720\pi\)
−0.785566 + 0.618778i \(0.787628\pi\)
\(510\) 0 0
\(511\) −1.15714 0.840712i −0.0511889 0.0371909i
\(512\) 20.9640 + 15.2312i 0.926485 + 0.673131i
\(513\) 0 0
\(514\) 0.237148 + 0.729868i 0.0104602 + 0.0321931i
\(515\) 12.9969 9.44281i 0.572712 0.416100i
\(516\) 0 0
\(517\) 7.22174 16.8603i 0.317612 0.741513i
\(518\) 19.8202 0.870850
\(519\) 0 0
\(520\) −6.43616 19.8085i −0.282244 0.868658i
\(521\) 1.34232 4.13123i 0.0588080 0.180993i −0.917337 0.398111i \(-0.869666\pi\)
0.976145 + 0.217119i \(0.0696658\pi\)
\(522\) 0 0
\(523\) −10.0849 7.32713i −0.440983 0.320393i 0.345042 0.938587i \(-0.387865\pi\)
−0.786026 + 0.618194i \(0.787865\pi\)
\(524\) 22.3710 68.8507i 0.977280 3.00776i
\(525\) 0 0
\(526\) 26.4432 19.2121i 1.15298 0.837687i
\(527\) 14.4561 0.629718
\(528\) 0 0
\(529\) 2.59198 0.112695
\(530\) −22.9247 + 16.6558i −0.995785 + 0.723480i
\(531\) 0 0
\(532\) −9.84659 + 30.3047i −0.426904 + 1.31387i
\(533\) −6.15689 4.47324i −0.266685 0.193758i
\(534\) 0 0
\(535\) −6.44311 + 19.8299i −0.278560 + 0.857320i
\(536\) 33.8449 + 104.164i 1.46188 + 4.49919i
\(537\) 0 0
\(538\) −33.5500 −1.44644
\(539\) 0.735535 + 3.23404i 0.0316818 + 0.139300i
\(540\) 0 0
\(541\) 10.1738 7.39173i 0.437408 0.317795i −0.347196 0.937792i \(-0.612866\pi\)
0.784604 + 0.619997i \(0.212866\pi\)
\(542\) 8.80979 + 27.1137i 0.378413 + 1.16463i
\(543\) 0 0
\(544\) −26.6980 19.3973i −1.14467 0.831651i
\(545\) −8.75118 6.35810i −0.374859 0.272351i
\(546\) 0 0
\(547\) −0.0775023 0.238528i −0.00331376 0.0101987i 0.949386 0.314112i \(-0.101707\pi\)
−0.952700 + 0.303913i \(0.901707\pi\)
\(548\) 11.1071 8.06981i 0.474473 0.344725i
\(549\) 0 0
\(550\) −4.02851 17.7127i −0.171776 0.755274i
\(551\) −52.8376 −2.25096
\(552\) 0 0
\(553\) −2.07577 6.38857i −0.0882708 0.271670i
\(554\) −4.98989 + 15.3573i −0.212000 + 0.652470i
\(555\) 0 0
\(556\) −1.43788 1.04468i −0.0609799 0.0443045i
\(557\) −8.75028 + 26.9306i −0.370761 + 1.14109i 0.575533 + 0.817779i \(0.304795\pi\)
−0.946294 + 0.323307i \(0.895205\pi\)
\(558\) 0 0
\(559\) −2.47649 + 1.79927i −0.104744 + 0.0761012i
\(560\) 19.2964 0.815421
\(561\) 0 0
\(562\) 22.8367 0.963308
\(563\) 13.1091 9.52433i 0.552483 0.401403i −0.276217 0.961095i \(-0.589081\pi\)
0.828700 + 0.559693i \(0.189081\pi\)
\(564\) 0 0
\(565\) 1.78278 5.48682i 0.0750019 0.230832i
\(566\) −6.85602 4.98119i −0.288180 0.209375i
\(567\) 0 0
\(568\) 35.6233 109.637i 1.49472 4.60028i
\(569\) 1.97953 + 6.09236i 0.0829862 + 0.255405i 0.983937 0.178516i \(-0.0571296\pi\)
−0.900951 + 0.433921i \(0.857130\pi\)
\(570\) 0 0
\(571\) 25.9443 1.08574 0.542868 0.839818i \(-0.317338\pi\)
0.542868 + 0.839818i \(0.317338\pi\)
\(572\) 9.93463 23.1939i 0.415388 0.969787i
\(573\) 0 0
\(574\) 10.8016 7.84779i 0.450848 0.327561i
\(575\) −3.22856 9.93650i −0.134640 0.414381i
\(576\) 0 0
\(577\) −7.25058 5.26785i −0.301845 0.219304i 0.426544 0.904467i \(-0.359731\pi\)
−0.728390 + 0.685163i \(0.759731\pi\)
\(578\) 24.1783 + 17.5665i 1.00568 + 0.730672i
\(579\) 0 0
\(580\) 22.2350 + 68.4322i 0.923257 + 2.84149i
\(581\) −4.74874 + 3.45016i −0.197011 + 0.143137i
\(582\) 0 0
\(583\) −20.6020 1.87016i −0.853248 0.0774542i
\(584\) −11.5039 −0.476037
\(585\) 0 0
\(586\) 7.00813 + 21.5688i 0.289503 + 0.890999i
\(587\) −1.53315 + 4.71854i −0.0632798 + 0.194755i −0.977698 0.210015i \(-0.932649\pi\)
0.914418 + 0.404771i \(0.132649\pi\)
\(588\) 0 0
\(589\) −30.9313 22.4729i −1.27450 0.925980i
\(590\) 15.6874 48.2809i 0.645840 1.98769i
\(591\) 0 0
\(592\) 68.1069 49.4825i 2.79918 2.03372i
\(593\) −30.7179 −1.26143 −0.630716 0.776013i \(-0.717239\pi\)
−0.630716 + 0.776013i \(0.717239\pi\)
\(594\) 0 0
\(595\) 4.10094 0.168122
\(596\) −2.08225 + 1.51284i −0.0852921 + 0.0619684i
\(597\) 0 0
\(598\) 6.26674 19.2870i 0.256266 0.788705i
\(599\) −26.4690 19.2309i −1.08149 0.785752i −0.103552 0.994624i \(-0.533021\pi\)
−0.977943 + 0.208872i \(0.933021\pi\)
\(600\) 0 0
\(601\) −12.5977 + 38.7716i −0.513869 + 1.58153i 0.271460 + 0.962450i \(0.412493\pi\)
−0.785330 + 0.619078i \(0.787507\pi\)
\(602\) −1.65953 5.10752i −0.0676375 0.208167i
\(603\) 0 0
\(604\) 4.92095 0.200230
\(605\) −8.95514 + 16.5804i −0.364078 + 0.674088i
\(606\) 0 0
\(607\) 20.6513 15.0041i 0.838212 0.608997i −0.0836587 0.996494i \(-0.526661\pi\)
0.921871 + 0.387498i \(0.126661\pi\)
\(608\) 26.9708 + 83.0075i 1.09381 + 3.36640i
\(609\) 0 0
\(610\) 50.7564 + 36.8767i 2.05507 + 1.49309i
\(611\) −6.76308 4.91367i −0.273605 0.198786i
\(612\) 0 0
\(613\) −11.4336 35.1891i −0.461800 1.42127i −0.862963 0.505267i \(-0.831394\pi\)
0.401163 0.916007i \(-0.368606\pi\)
\(614\) 7.50464 5.45244i 0.302863 0.220043i
\(615\) 0 0
\(616\) 20.0752 + 17.5664i 0.808852 + 0.707769i
\(617\) 43.0676 1.73384 0.866918 0.498452i \(-0.166098\pi\)
0.866918 + 0.498452i \(0.166098\pi\)
\(618\) 0 0
\(619\) 4.49645 + 13.8387i 0.180728 + 0.556223i 0.999849 0.0173982i \(-0.00553830\pi\)
−0.819121 + 0.573621i \(0.805538\pi\)
\(620\) −16.0892 + 49.5174i −0.646157 + 1.98867i
\(621\) 0 0
\(622\) −7.91762 5.75249i −0.317468 0.230654i
\(623\) 5.07531 15.6202i 0.203338 0.625810i
\(624\) 0 0
\(625\) 8.42056 6.11789i 0.336822 0.244716i
\(626\) −69.6514 −2.78383
\(627\) 0 0
\(628\) −16.5562 −0.660666
\(629\) 14.4743 10.5162i 0.577130 0.419309i
\(630\) 0 0
\(631\) 2.11020 6.49452i 0.0840057 0.258543i −0.900227 0.435421i \(-0.856600\pi\)
0.984233 + 0.176878i \(0.0565997\pi\)
\(632\) −43.7093 31.7566i −1.73866 1.26321i
\(633\) 0 0
\(634\) −10.7192 + 32.9903i −0.425714 + 1.31021i
\(635\) 0.589590 + 1.81457i 0.0233972 + 0.0720090i
\(636\) 0 0
\(637\) 1.51161 0.0598924
\(638\) −28.9012 + 67.4744i −1.14421 + 2.67134i
\(639\) 0 0
\(640\) 13.3569 9.70436i 0.527978 0.383598i
\(641\) 3.52797 + 10.8580i 0.139346 + 0.428864i 0.996241 0.0866281i \(-0.0276092\pi\)
−0.856894 + 0.515492i \(0.827609\pi\)
\(642\) 0 0
\(643\) 29.3099 + 21.2949i 1.15587 + 0.839790i 0.989250 0.146231i \(-0.0467143\pi\)
0.166621 + 0.986021i \(0.446714\pi\)
\(644\) 20.5980 + 14.9653i 0.811674 + 0.589716i
\(645\) 0 0
\(646\) 12.4204 + 38.2261i 0.488675 + 1.50399i
\(647\) −19.5403 + 14.1968i −0.768208 + 0.558136i −0.901417 0.432952i \(-0.857472\pi\)
0.133209 + 0.991088i \(0.457472\pi\)
\(648\) 0 0
\(649\) 31.8294 18.9840i 1.24941 0.745187i
\(650\) −8.27908 −0.324732
\(651\) 0 0
\(652\) 5.41573 + 16.6679i 0.212096 + 0.652766i
\(653\) 5.66913 17.4478i 0.221850 0.682784i −0.776746 0.629814i \(-0.783131\pi\)
0.998596 0.0529703i \(-0.0168689\pi\)
\(654\) 0 0
\(655\) 19.9356 + 14.4841i 0.778949 + 0.565940i
\(656\) 17.5241 53.9337i 0.684202 2.10576i
\(657\) 0 0
\(658\) 11.8650 8.62046i 0.462548 0.336061i
\(659\) 9.32284 0.363166 0.181583 0.983376i \(-0.441878\pi\)
0.181583 + 0.983376i \(0.441878\pi\)
\(660\) 0 0
\(661\) −9.30120 −0.361775 −0.180887 0.983504i \(-0.557897\pi\)
−0.180887 + 0.983504i \(0.557897\pi\)
\(662\) −17.0281 + 12.3717i −0.661817 + 0.480838i
\(663\) 0 0
\(664\) −14.5889 + 44.8999i −0.566158 + 1.74246i
\(665\) −8.77467 6.37517i −0.340267 0.247218i
\(666\) 0 0
\(667\) −13.0463 + 40.1525i −0.505157 + 1.55471i
\(668\) 7.11486 + 21.8973i 0.275282 + 0.847231i
\(669\) 0 0
\(670\) −61.8647 −2.39004
\(671\) 10.1575 + 44.6609i 0.392125 + 1.72411i
\(672\) 0 0
\(673\) −29.0694 + 21.1202i −1.12054 + 0.814123i −0.984292 0.176551i \(-0.943506\pi\)
−0.136253 + 0.990674i \(0.543506\pi\)
\(674\) 8.19544 + 25.2230i 0.315677 + 0.971553i
\(675\) 0 0
\(676\) 43.6280 + 31.6976i 1.67800 + 1.21914i
\(677\) −38.4071 27.9044i −1.47610 1.07245i −0.978786 0.204884i \(-0.934318\pi\)
−0.497318 0.867568i \(-0.665682\pi\)
\(678\) 0 0
\(679\) −3.72415 11.4617i −0.142920 0.439861i
\(680\) 26.6846 19.3875i 1.02331 0.743475i
\(681\) 0 0
\(682\) −45.6171 + 27.2075i −1.74677 + 1.04183i
\(683\) 30.1415 1.15333 0.576667 0.816980i \(-0.304353\pi\)
0.576667 + 0.816980i \(0.304353\pi\)
\(684\) 0 0
\(685\) 1.44410 + 4.44448i 0.0551761 + 0.169815i
\(686\) −0.819499 + 2.52216i −0.0312886 + 0.0962964i
\(687\) 0 0
\(688\) −18.4538 13.4075i −0.703545 0.511156i
\(689\) −2.91353 + 8.96691i −0.110996 + 0.341612i
\(690\) 0 0
\(691\) −37.0354 + 26.9078i −1.40889 + 1.02362i −0.415409 + 0.909635i \(0.636362\pi\)
−0.993482 + 0.113985i \(0.963638\pi\)
\(692\) −28.8118 −1.09526
\(693\) 0 0
\(694\) 14.3432 0.544459
\(695\) 0.489434 0.355594i 0.0185653 0.0134885i
\(696\) 0 0
\(697\) 3.72430 11.4622i 0.141068 0.434162i
\(698\) 61.2127 + 44.4737i 2.31694 + 1.68335i
\(699\) 0 0
\(700\) 3.21198 9.88545i 0.121401 0.373635i
\(701\) −3.83930 11.8162i −0.145008 0.446290i 0.852004 0.523536i \(-0.175387\pi\)
−0.997012 + 0.0772457i \(0.975387\pi\)
\(702\) 0 0
\(703\) −47.3184 −1.78465
\(704\) 46.3437 + 4.20688i 1.74664 + 0.158553i
\(705\) 0 0
\(706\) −41.2417 + 29.9639i −1.55215 + 1.12771i
\(707\) −1.65276 5.08668i −0.0621585 0.191304i
\(708\) 0 0
\(709\) 3.65899 + 2.65841i 0.137416 + 0.0998388i 0.654370 0.756175i \(-0.272934\pi\)
−0.516953 + 0.856013i \(0.672934\pi\)
\(710\) 52.6796 + 38.2739i 1.97703 + 1.43640i
\(711\) 0 0
\(712\) −40.8208 125.633i −1.52982 4.70831i
\(713\) −24.7151 + 17.9565i −0.925586 + 0.672478i
\(714\) 0 0
\(715\) 6.46349 + 5.65573i 0.241721 + 0.211512i
\(716\) −14.8822 −0.556174
\(717\) 0 0
\(718\) −18.3181 56.3773i −0.683625 2.10398i
\(719\) 2.57112 7.91310i 0.0958867 0.295109i −0.891597 0.452830i \(-0.850415\pi\)
0.987484 + 0.157721i \(0.0504146\pi\)
\(720\) 0 0
\(721\) 7.58674 + 5.51209i 0.282545 + 0.205281i
\(722\) 17.2787 53.1785i 0.643048 1.97910i
\(723\) 0 0
\(724\) 38.2738 27.8076i 1.42244 1.03346i
\(725\) 17.2357 0.640119
\(726\) 0 0
\(727\) 39.9612 1.48208 0.741040 0.671461i \(-0.234333\pi\)
0.741040 + 0.671461i \(0.234333\pi\)
\(728\) 9.83597 7.14625i 0.364545 0.264858i
\(729\) 0 0
\(730\) 2.00799 6.17996i 0.0743190 0.228731i
\(731\) −3.92188 2.84941i −0.145056 0.105389i
\(732\) 0 0
\(733\) −4.10613 + 12.6374i −0.151663 + 0.466772i −0.997808 0.0661822i \(-0.978918\pi\)
0.846144 + 0.532954i \(0.178918\pi\)
\(734\) −19.2130 59.1316i −0.709165 2.18259i
\(735\) 0 0
\(736\) 69.7388 2.57061
\(737\) −33.9886 29.7410i −1.25199 1.09552i
\(738\) 0 0
\(739\) 5.29565 3.84752i 0.194804 0.141533i −0.486108 0.873899i \(-0.661584\pi\)
0.680912 + 0.732366i \(0.261584\pi\)
\(740\) 19.9124 + 61.2841i 0.731995 + 2.25285i
\(741\) 0 0
\(742\) −13.3819 9.72255i −0.491266 0.356926i
\(743\) −26.9014 19.5450i −0.986915 0.717036i −0.0276716 0.999617i \(-0.508809\pi\)
−0.959243 + 0.282581i \(0.908809\pi\)
\(744\) 0 0
\(745\) −0.270724 0.833203i −0.00991856 0.0305262i
\(746\) 71.7740 52.1468i 2.62783 1.90923i
\(747\) 0 0
\(748\) 39.7950 + 3.61242i 1.45505 + 0.132083i
\(749\) −12.1711 −0.444721
\(750\) 0 0
\(751\) −0.237730 0.731659i −0.00867490 0.0266986i 0.946625 0.322336i \(-0.104468\pi\)
−0.955300 + 0.295637i \(0.904468\pi\)
\(752\) 19.2495 59.2439i 0.701957 2.16040i
\(753\) 0 0
\(754\) 27.0657 + 19.6644i 0.985675 + 0.716135i
\(755\) −0.517608 + 1.59303i −0.0188377 + 0.0579764i
\(756\) 0 0
\(757\) 1.85608 1.34852i 0.0674602 0.0490127i −0.553544 0.832820i \(-0.686725\pi\)
0.621004 + 0.783807i \(0.286725\pi\)
\(758\) −48.7417 −1.77038
\(759\) 0 0
\(760\) −87.2351 −3.16435
\(761\) −3.23539 + 2.35065i −0.117283 + 0.0852109i −0.644880 0.764283i \(-0.723093\pi\)
0.527598 + 0.849494i \(0.323093\pi\)
\(762\) 0 0
\(763\) 1.95122 6.00524i 0.0706390 0.217404i
\(764\) −37.4964 27.2428i −1.35657 0.985608i
\(765\) 0 0
\(766\) −17.4884 + 53.8237i −0.631881 + 1.94473i
\(767\) −5.21965 16.0644i −0.188471 0.580053i
\(768\) 0 0
\(769\) 48.3136 1.74223 0.871116 0.491077i \(-0.163396\pi\)
0.871116 + 0.491077i \(0.163396\pi\)
\(770\) −12.9408 + 7.71828i −0.466353 + 0.278147i
\(771\) 0 0
\(772\) 6.07580 4.41433i 0.218673 0.158875i
\(773\) 4.15257 + 12.7803i 0.149358 + 0.459675i 0.997546 0.0700199i \(-0.0223063\pi\)
−0.848188 + 0.529695i \(0.822306\pi\)
\(774\) 0 0
\(775\) 10.0899 + 7.33071i 0.362438 + 0.263327i
\(776\) −78.4188 56.9746i −2.81507 2.04527i
\(777\) 0 0
\(778\) −12.7198 39.1475i −0.456027 1.40351i
\(779\) −25.7875 + 18.7357i −0.923932 + 0.671276i
\(780\) 0 0
\(781\) 10.5423 + 46.3531i 0.377235 + 1.65864i
\(782\) 32.1157 1.14845
\(783\) 0 0
\(784\) 3.48076 + 10.7127i 0.124313 + 0.382595i
\(785\) 1.74146 5.35967i 0.0621554 0.191295i
\(786\) 0 0
\(787\) 5.95242 + 4.32469i 0.212181 + 0.154158i 0.688800 0.724952i \(-0.258138\pi\)
−0.476619 + 0.879110i \(0.658138\pi\)
\(788\) −5.25233 + 16.1650i −0.187106 + 0.575855i
\(789\) 0 0
\(790\) 24.6891 17.9377i 0.878400 0.638195i
\(791\) 3.36767 0.119741
\(792\) 0 0
\(793\) 20.8749 0.741288
\(794\) −46.0799 + 33.4790i −1.63531 + 1.18813i
\(795\) 0 0
\(796\) 43.2534 133.120i 1.53308 4.71833i
\(797\) −3.90464 2.83689i −0.138309 0.100488i 0.516479 0.856300i \(-0.327242\pi\)
−0.654789 + 0.755812i \(0.727242\pi\)
\(798\) 0 0
\(799\) 4.09098 12.5907i 0.144728 0.445428i
\(800\) −8.79792 27.0772i −0.311053 0.957324i
\(801\) 0 0
\(802\) −23.5522 −0.831655
\(803\) 4.07416 2.42996i 0.143774 0.0857513i
\(804\) 0 0
\(805\) −7.01123 + 5.09396i −0.247113 + 0.179538i
\(806\) 7.48069 + 23.0232i 0.263496 + 0.810957i
\(807\) 0 0
\(808\) −34.8020 25.2851i −1.22433 0.889527i
\(809\) −42.2996 30.7325i −1.48718 1.08050i −0.975155 0.221524i \(-0.928897\pi\)
−0.512021 0.858973i \(-0.671103\pi\)
\(810\) 0 0
\(811\) −10.9156 33.5947i −0.383298 1.17967i −0.937708 0.347426i \(-0.887056\pi\)
0.554410 0.832244i \(-0.312944\pi\)
\(812\) −33.9803 + 24.6881i −1.19247 + 0.866384i
\(813\) 0 0
\(814\) −25.8824 + 60.4264i −0.907176 + 2.11794i
\(815\) −5.96547 −0.208961
\(816\) 0 0
\(817\) 3.96194 + 12.1936i 0.138611 + 0.426600i
\(818\) 4.47263 13.7653i 0.156382 0.481294i
\(819\) 0 0
\(820\) 35.1172 + 25.5141i 1.22635 + 0.890993i
\(821\) −9.40526 + 28.9464i −0.328246 + 1.01024i 0.641708 + 0.766949i \(0.278226\pi\)
−0.969954 + 0.243288i \(0.921774\pi\)
\(822\) 0 0
\(823\) −37.1206 + 26.9697i −1.29394 + 0.940104i −0.999877 0.0156819i \(-0.995008\pi\)
−0.294065 + 0.955786i \(0.595008\pi\)
\(824\) 75.4251 2.62756
\(825\) 0 0
\(826\) 29.6336 1.03108
\(827\) 9.89408 7.18847i 0.344051 0.249968i −0.402318 0.915500i \(-0.631795\pi\)
0.746369 + 0.665532i \(0.231795\pi\)
\(828\) 0 0
\(829\) 6.10050 18.7754i 0.211879 0.652097i −0.787481 0.616339i \(-0.788615\pi\)
0.999360 0.0357585i \(-0.0113847\pi\)
\(830\) −21.5739 15.6744i −0.748842 0.544066i
\(831\) 0 0
\(832\) 6.55389 20.1708i 0.227215 0.699297i
\(833\) 0.739744 + 2.27670i 0.0256306 + 0.0788829i
\(834\) 0 0
\(835\) −7.83707 −0.271213
\(836\) −79.5324 69.5931i −2.75069 2.40693i
\(837\) 0 0
\(838\) 42.8678 31.1453i 1.48084 1.07590i
\(839\) −3.08217 9.48594i −0.106408 0.327491i 0.883650 0.468148i \(-0.155079\pi\)
−0.990058 + 0.140657i \(0.955079\pi\)
\(840\) 0 0
\(841\) −32.8850 23.8924i −1.13397 0.823875i
\(842\) 60.7431 + 44.1325i 2.09335 + 1.52091i
\(843\) 0 0
\(844\) −37.3364 114.910i −1.28517 3.95535i
\(845\) −14.8503 + 10.7894i −0.510866 + 0.371166i
\(846\) 0 0
\(847\) −10.8202 1.98074i −0.371786 0.0680592i
\(848\) −70.2565 −2.41262
\(849\) 0 0
\(850\) −4.05156 12.4694i −0.138968 0.427698i
\(851\) −11.6836 + 35.9584i −0.400508 + 1.23264i
\(852\) 0 0
\(853\) 0.565471 + 0.410839i 0.0193614 + 0.0140669i 0.597424 0.801926i \(-0.296191\pi\)
−0.578062 + 0.815993i \(0.696191\pi\)
\(854\) −11.3170 + 34.8301i −0.387259 + 1.19186i
\(855\) 0 0
\(856\) −79.1963 + 57.5395i −2.70687 + 1.96666i
\(857\) 40.0835 1.36922 0.684612 0.728907i \(-0.259972\pi\)
0.684612 + 0.728907i \(0.259972\pi\)
\(858\) 0 0
\(859\) −28.0045 −0.955503 −0.477751 0.878495i \(-0.658548\pi\)
−0.477751 + 0.878495i \(0.658548\pi\)
\(860\) 14.1252 10.2626i 0.481665 0.349950i
\(861\) 0 0
\(862\) −26.0311 + 80.1156i −0.886624 + 2.72875i
\(863\) −21.0736 15.3109i −0.717354 0.521188i 0.168184 0.985756i \(-0.446210\pi\)
−0.885538 + 0.464567i \(0.846210\pi\)
\(864\) 0 0
\(865\) 3.03056 9.32711i 0.103042 0.317131i
\(866\) −10.7896 33.2071i −0.366647 1.12842i
\(867\) 0 0
\(868\) −30.3925 −1.03159
\(869\) 22.1877 + 2.01410i 0.752665 + 0.0683237i
\(870\) 0 0
\(871\) −16.6529 + 12.0991i −0.564263 + 0.409961i
\(872\) −15.6937 48.3002i −0.531455 1.63565i
\(873\) 0 0
\(874\) −68.7170 49.9258i −2.32439 1.68877i
\(875\) 9.79198 + 7.11429i 0.331029 + 0.240507i
\(876\) 0 0
\(877\) −13.1771 40.5550i −0.444960 1.36945i −0.882527 0.470261i \(-0.844160\pi\)
0.437567 0.899186i \(-0.355840\pi\)
\(878\) 21.0506 15.2941i 0.710422 0.516152i
\(879\) 0 0
\(880\) −25.1983 + 58.8294i −0.849436 + 1.98314i
\(881\) 5.07985 0.171144 0.0855722 0.996332i \(-0.472728\pi\)
0.0855722 + 0.996332i \(0.472728\pi\)
\(882\) 0 0
\(883\) 15.1568 + 46.6478i 0.510066 + 1.56982i 0.792083 + 0.610414i \(0.208997\pi\)
−0.282016 + 0.959410i \(0.591003\pi\)
\(884\) 5.62779 17.3205i 0.189283 0.582553i
\(885\) 0 0
\(886\) 5.33180 + 3.87378i 0.179125 + 0.130142i
\(887\) −16.6644 + 51.2876i −0.559534 + 1.72207i 0.124123 + 0.992267i \(0.460388\pi\)
−0.683657 + 0.729803i \(0.739612\pi\)
\(888\) 0 0
\(889\) −0.901033 + 0.654639i −0.0302197 + 0.0219559i
\(890\) 74.6159 2.50113
\(891\) 0 0
\(892\) 114.839 3.84509
\(893\) −28.3264 + 20.5804i −0.947908 + 0.688695i
\(894\) 0 0
\(895\) 1.56538 4.81774i 0.0523248 0.161039i
\(896\) 7.79688 + 5.66477i 0.260476 + 0.189247i
\(897\) 0 0
\(898\) 12.7921 39.3701i 0.426879 1.31380i
\(899\) −15.5736 47.9306i −0.519409 1.59858i
\(900\) 0 0
\(901\) −14.9312 −0.497430
\(902\) 9.82047 + 43.1791i 0.326986 + 1.43771i
\(903\) 0 0
\(904\) 21.9132 15.9209i 0.728822 0.529520i
\(905\) 4.97619 + 15.3151i 0.165414 + 0.509092i
\(906\) 0 0
\(907\) −20.8424 15.1429i −0.692061 0.502812i 0.185276 0.982687i \(-0.440682\pi\)
−0.877337 + 0.479875i \(0.840682\pi\)
\(908\) 58.6510 + 42.6125i 1.94640 + 1.41414i
\(909\) 0 0
\(910\) 2.12214 + 6.53128i 0.0703483 + 0.216510i
\(911\) −23.6129 + 17.1558i −0.782331 + 0.568397i −0.905678 0.423967i \(-0.860637\pi\)
0.123346 + 0.992364i \(0.460637\pi\)
\(912\) 0 0
\(913\) −4.31742 18.9830i −0.142886 0.628247i
\(914\) 36.2396 1.19870
\(915\) 0 0
\(916\) −5.90007 18.1585i −0.194944 0.599975i
\(917\) −4.44498 + 13.6802i −0.146786 + 0.451761i
\(918\) 0 0
\(919\) 32.7816 + 23.8172i 1.08136 + 0.785657i 0.977920 0.208978i \(-0.0670138\pi\)
0.103444 + 0.994635i \(0.467014\pi\)
\(920\) −21.5396 + 66.2920i −0.710139 + 2.18558i
\(921\) 0 0
\(922\) 40.0227 29.0782i 1.31808 0.957639i
\(923\) 21.6658 0.713139
\(924\) 0 0
\(925\) 15.4354 0.507512
\(926\) 39.8408 28.9460i 1.30925 0.951226i
\(927\) 0 0
\(928\) −35.5516 + 109.417i −1.16704 + 3.59178i
\(929\) 4.15304 + 3.01736i 0.136257 + 0.0989963i 0.653826 0.756645i \(-0.273163\pi\)
−0.517569 + 0.855641i \(0.673163\pi\)
\(930\) 0 0
\(931\) 1.95646 6.02136i 0.0641204 0.197342i
\(932\) −42.7448 131.555i −1.40015 4.30923i
\(933\) 0 0
\(934\) −92.7066 −3.03345
\(935\) −5.35525 + 12.5027i −0.175135 + 0.408881i
\(936\) 0 0
\(937\) 20.4911 14.8877i 0.669416 0.486359i −0.200414 0.979711i \(-0.564229\pi\)
0.869830 + 0.493352i \(0.164229\pi\)
\(938\) −11.1594 34.3451i −0.364367 1.12141i
\(939\) 0 0
\(940\) 38.5747 + 28.0262i 1.25817 + 0.914114i
\(941\) 17.2117 + 12.5051i 0.561086 + 0.407653i 0.831856 0.554991i \(-0.187278\pi\)
−0.270770 + 0.962644i \(0.587278\pi\)
\(942\) 0 0
\(943\) 7.87041 + 24.2226i 0.256296 + 0.788797i
\(944\) 101.828 73.9823i 3.31422 2.40792i
\(945\) 0 0
\(946\) 17.7385 + 1.61023i 0.576729 + 0.0523530i
\(947\) 30.1418 0.979476 0.489738 0.871870i \(-0.337092\pi\)
0.489738 + 0.871870i \(0.337092\pi\)
\(948\) 0 0
\(949\) −0.668116 2.05625i −0.0216880 0.0667487i
\(950\) −10.7155 + 32.9789i −0.347656 + 1.06998i
\(951\) 0 0
\(952\) 15.5767 + 11.3171i 0.504844 + 0.366790i
\(953\) −2.75961 + 8.49320i −0.0893925 + 0.275122i −0.985752 0.168207i \(-0.946202\pi\)
0.896359 + 0.443328i \(0.146202\pi\)
\(954\) 0 0
\(955\) 12.7632 9.27301i 0.413008 0.300068i
\(956\) −56.5367 −1.82853
\(957\) 0 0
\(958\) −107.522 −3.47387
\(959\) −2.20692 + 1.60342i −0.0712653 + 0.0517772i
\(960\) 0 0
\(961\) 1.68951 5.19976i 0.0545002 0.167734i
\(962\) 24.2386 + 17.6103i 0.781482 + 0.567780i
\(963\) 0 0
\(964\) 22.9391 70.5994i 0.738820 2.27385i
\(965\) 0.789947 + 2.43121i 0.0254293 + 0.0782633i
\(966\) 0 0
\(967\) −38.3461 −1.23313 −0.616564 0.787305i \(-0.711476\pi\)
−0.616564 + 0.787305i \(0.711476\pi\)
\(968\) −79.7703 + 38.2646i −2.56392 + 1.22987i
\(969\) 0 0
\(970\) 44.2948 32.1821i 1.42222 1.03330i
\(971\) −9.62612 29.6262i −0.308917 0.950749i −0.978186 0.207729i \(-0.933393\pi\)
0.669269 0.743020i \(-0.266607\pi\)
\(972\) 0 0
\(973\) 0.285699 + 0.207573i 0.00915910 + 0.00665448i
\(974\) −29.0859 21.1322i −0.931973 0.677118i
\(975\) 0 0
\(976\) 48.0680 + 147.938i 1.53862 + 4.73538i
\(977\) 24.0815 17.4962i 0.770435 0.559754i −0.131658 0.991295i \(-0.542030\pi\)
0.902093 + 0.431542i \(0.142030\pi\)
\(978\) 0 0
\(979\) 40.9941 + 35.8710i 1.31018 + 1.14644i
\(980\) −8.62183 −0.275414
\(981\) 0 0
\(982\) 19.2249 + 59.1683i 0.613492 + 1.88814i
\(983\) 12.3319 37.9537i 0.393326 1.21053i −0.536931 0.843626i \(-0.680417\pi\)
0.930257 0.366908i \(-0.119583\pi\)
\(984\) 0 0
\(985\) −4.68055 3.40062i −0.149135 0.108353i
\(986\) −16.3720 + 50.3879i −0.521391 + 1.60468i
\(987\) 0 0
\(988\) −38.9675 + 28.3115i −1.23972 + 0.900709i
\(989\) 10.2445 0.325755
\(990\) 0 0
\(991\) −10.7771 −0.342345 −0.171173 0.985241i \(-0.554756\pi\)
−0.171173 + 0.985241i \(0.554756\pi\)
\(992\) −67.3492 + 48.9320i −2.13834 + 1.55359i
\(993\) 0 0
\(994\) −11.7458 + 36.1498i −0.372554 + 1.14660i
\(995\) 38.5448 + 28.0044i 1.22195 + 0.887800i
\(996\) 0 0
\(997\) 0.352040 1.08347i 0.0111492 0.0343137i −0.945327 0.326124i \(-0.894257\pi\)
0.956476 + 0.291810i \(0.0942574\pi\)
\(998\) 14.1672 + 43.6020i 0.448454 + 1.38020i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.2.m.j.190.1 20
3.2 odd 2 231.2.j.g.190.5 yes 20
11.2 odd 10 7623.2.a.cy.1.1 10
11.4 even 5 inner 693.2.m.j.631.1 20
11.9 even 5 7623.2.a.cx.1.10 10
33.2 even 10 2541.2.a.br.1.10 10
33.20 odd 10 2541.2.a.bq.1.1 10
33.26 odd 10 231.2.j.g.169.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.2.j.g.169.5 20 33.26 odd 10
231.2.j.g.190.5 yes 20 3.2 odd 2
693.2.m.j.190.1 20 1.1 even 1 trivial
693.2.m.j.631.1 20 11.4 even 5 inner
2541.2.a.bq.1.1 10 33.20 odd 10
2541.2.a.br.1.10 10 33.2 even 10
7623.2.a.cx.1.10 10 11.9 even 5
7623.2.a.cy.1.1 10 11.2 odd 10