Properties

Label 7623.2.a.cx.1.10
Level $7623$
Weight $2$
Character 7623.1
Self dual yes
Analytic conductor $60.870$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7623,2,Mod(1,7623)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7623, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7623.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7623 = 3^{2} \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7623.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8699614608\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 19x^{8} - x^{7} + 124x^{6} + 6x^{5} - 316x^{4} + 17x^{3} + 253x^{2} - 70x - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-2.65195\) of defining polynomial
Character \(\chi\) \(=\) 7623.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.65195 q^{2} +5.03286 q^{4} -1.71311 q^{5} -1.00000 q^{7} +8.04301 q^{8} -4.54308 q^{10} +1.51161 q^{13} -2.65195 q^{14} +11.2640 q^{16} +2.39386 q^{17} +6.33123 q^{19} -8.62183 q^{20} +5.05885 q^{23} -2.06526 q^{25} +4.00873 q^{26} -5.03286 q^{28} -8.34554 q^{29} +6.03882 q^{31} +13.7855 q^{32} +6.34841 q^{34} +1.71311 q^{35} -7.47381 q^{37} +16.7901 q^{38} -13.7785 q^{40} +5.03457 q^{41} +2.02506 q^{43} +13.4158 q^{46} +5.53026 q^{47} +1.00000 q^{49} -5.47698 q^{50} +7.60775 q^{52} -6.23728 q^{53} -8.04301 q^{56} -22.1320 q^{58} -11.1742 q^{59} +13.8096 q^{61} +16.0147 q^{62} +14.0306 q^{64} -2.58956 q^{65} +13.6173 q^{67} +12.0480 q^{68} +4.54308 q^{70} +14.3329 q^{71} -1.43030 q^{73} -19.8202 q^{74} +31.8642 q^{76} +6.71734 q^{79} -19.2964 q^{80} +13.3515 q^{82} -5.86977 q^{83} -4.10094 q^{85} +5.37036 q^{86} -16.4241 q^{89} -1.51161 q^{91} +25.4605 q^{92} +14.6660 q^{94} -10.8461 q^{95} +12.0516 q^{97} +2.65195 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 18 q^{4} - 5 q^{5} - 10 q^{7} - 3 q^{8} + 6 q^{10} - 6 q^{13} + 38 q^{16} + 8 q^{17} - 7 q^{20} + 31 q^{25} - q^{26} - 18 q^{28} - 14 q^{29} + 26 q^{31} - 41 q^{32} + 21 q^{34} + 5 q^{35} + 24 q^{37}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.65195 1.87521 0.937607 0.347696i \(-0.113036\pi\)
0.937607 + 0.347696i \(0.113036\pi\)
\(3\) 0 0
\(4\) 5.03286 2.51643
\(5\) −1.71311 −0.766125 −0.383063 0.923722i \(-0.625131\pi\)
−0.383063 + 0.923722i \(0.625131\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 8.04301 2.84363
\(9\) 0 0
\(10\) −4.54308 −1.43665
\(11\) 0 0
\(12\) 0 0
\(13\) 1.51161 0.419246 0.209623 0.977782i \(-0.432776\pi\)
0.209623 + 0.977782i \(0.432776\pi\)
\(14\) −2.65195 −0.708765
\(15\) 0 0
\(16\) 11.2640 2.81599
\(17\) 2.39386 0.580597 0.290298 0.956936i \(-0.406245\pi\)
0.290298 + 0.956936i \(0.406245\pi\)
\(18\) 0 0
\(19\) 6.33123 1.45248 0.726242 0.687439i \(-0.241265\pi\)
0.726242 + 0.687439i \(0.241265\pi\)
\(20\) −8.62183 −1.92790
\(21\) 0 0
\(22\) 0 0
\(23\) 5.05885 1.05484 0.527422 0.849604i \(-0.323159\pi\)
0.527422 + 0.849604i \(0.323159\pi\)
\(24\) 0 0
\(25\) −2.06526 −0.413052
\(26\) 4.00873 0.786177
\(27\) 0 0
\(28\) −5.03286 −0.951121
\(29\) −8.34554 −1.54973 −0.774864 0.632128i \(-0.782182\pi\)
−0.774864 + 0.632128i \(0.782182\pi\)
\(30\) 0 0
\(31\) 6.03882 1.08460 0.542302 0.840184i \(-0.317553\pi\)
0.542302 + 0.840184i \(0.317553\pi\)
\(32\) 13.7855 2.43696
\(33\) 0 0
\(34\) 6.34841 1.08874
\(35\) 1.71311 0.289568
\(36\) 0 0
\(37\) −7.47381 −1.22869 −0.614343 0.789039i \(-0.710579\pi\)
−0.614343 + 0.789039i \(0.710579\pi\)
\(38\) 16.7901 2.72372
\(39\) 0 0
\(40\) −13.7785 −2.17858
\(41\) 5.03457 0.786269 0.393134 0.919481i \(-0.371391\pi\)
0.393134 + 0.919481i \(0.371391\pi\)
\(42\) 0 0
\(43\) 2.02506 0.308818 0.154409 0.988007i \(-0.450653\pi\)
0.154409 + 0.988007i \(0.450653\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 13.4158 1.97806
\(47\) 5.53026 0.806672 0.403336 0.915052i \(-0.367851\pi\)
0.403336 + 0.915052i \(0.367851\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −5.47698 −0.774562
\(51\) 0 0
\(52\) 7.60775 1.05500
\(53\) −6.23728 −0.856757 −0.428378 0.903599i \(-0.640915\pi\)
−0.428378 + 0.903599i \(0.640915\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −8.04301 −1.07479
\(57\) 0 0
\(58\) −22.1320 −2.90607
\(59\) −11.1742 −1.45476 −0.727381 0.686234i \(-0.759263\pi\)
−0.727381 + 0.686234i \(0.759263\pi\)
\(60\) 0 0
\(61\) 13.8096 1.76814 0.884072 0.467351i \(-0.154791\pi\)
0.884072 + 0.467351i \(0.154791\pi\)
\(62\) 16.0147 2.03387
\(63\) 0 0
\(64\) 14.0306 1.75382
\(65\) −2.58956 −0.321195
\(66\) 0 0
\(67\) 13.6173 1.66362 0.831811 0.555059i \(-0.187304\pi\)
0.831811 + 0.555059i \(0.187304\pi\)
\(68\) 12.0480 1.46103
\(69\) 0 0
\(70\) 4.54308 0.543002
\(71\) 14.3329 1.70100 0.850501 0.525974i \(-0.176299\pi\)
0.850501 + 0.525974i \(0.176299\pi\)
\(72\) 0 0
\(73\) −1.43030 −0.167404 −0.0837022 0.996491i \(-0.526674\pi\)
−0.0837022 + 0.996491i \(0.526674\pi\)
\(74\) −19.8202 −2.30405
\(75\) 0 0
\(76\) 31.8642 3.65508
\(77\) 0 0
\(78\) 0 0
\(79\) 6.71734 0.755760 0.377880 0.925855i \(-0.376653\pi\)
0.377880 + 0.925855i \(0.376653\pi\)
\(80\) −19.2964 −2.15740
\(81\) 0 0
\(82\) 13.3515 1.47442
\(83\) −5.86977 −0.644291 −0.322145 0.946690i \(-0.604404\pi\)
−0.322145 + 0.946690i \(0.604404\pi\)
\(84\) 0 0
\(85\) −4.10094 −0.444810
\(86\) 5.37036 0.579101
\(87\) 0 0
\(88\) 0 0
\(89\) −16.4241 −1.74095 −0.870473 0.492215i \(-0.836187\pi\)
−0.870473 + 0.492215i \(0.836187\pi\)
\(90\) 0 0
\(91\) −1.51161 −0.158460
\(92\) 25.4605 2.65444
\(93\) 0 0
\(94\) 14.6660 1.51268
\(95\) −10.8461 −1.11279
\(96\) 0 0
\(97\) 12.0516 1.22365 0.611827 0.790992i \(-0.290435\pi\)
0.611827 + 0.790992i \(0.290435\pi\)
\(98\) 2.65195 0.267888
\(99\) 0 0
\(100\) −10.3942 −1.03942
\(101\) 5.34845 0.532190 0.266095 0.963947i \(-0.414266\pi\)
0.266095 + 0.963947i \(0.414266\pi\)
\(102\) 0 0
\(103\) 9.37773 0.924015 0.462008 0.886876i \(-0.347129\pi\)
0.462008 + 0.886876i \(0.347129\pi\)
\(104\) 12.1579 1.19218
\(105\) 0 0
\(106\) −16.5410 −1.60660
\(107\) 12.1711 1.17662 0.588311 0.808635i \(-0.299793\pi\)
0.588311 + 0.808635i \(0.299793\pi\)
\(108\) 0 0
\(109\) −6.31429 −0.604799 −0.302399 0.953181i \(-0.597788\pi\)
−0.302399 + 0.953181i \(0.597788\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −11.2640 −1.06434
\(113\) −3.36767 −0.316804 −0.158402 0.987375i \(-0.550634\pi\)
−0.158402 + 0.987375i \(0.550634\pi\)
\(114\) 0 0
\(115\) −8.66636 −0.808142
\(116\) −42.0020 −3.89978
\(117\) 0 0
\(118\) −29.6336 −2.72799
\(119\) −2.39386 −0.219445
\(120\) 0 0
\(121\) 0 0
\(122\) 36.6225 3.31565
\(123\) 0 0
\(124\) 30.3925 2.72933
\(125\) 12.1036 1.08257
\(126\) 0 0
\(127\) −1.11374 −0.0988282 −0.0494141 0.998778i \(-0.515735\pi\)
−0.0494141 + 0.998778i \(0.515735\pi\)
\(128\) 9.63748 0.851841
\(129\) 0 0
\(130\) −6.86739 −0.602310
\(131\) 14.3843 1.25676 0.628379 0.777907i \(-0.283719\pi\)
0.628379 + 0.777907i \(0.283719\pi\)
\(132\) 0 0
\(133\) −6.33123 −0.548988
\(134\) 36.1125 3.11965
\(135\) 0 0
\(136\) 19.2539 1.65100
\(137\) −2.72791 −0.233061 −0.116530 0.993187i \(-0.537177\pi\)
−0.116530 + 0.993187i \(0.537177\pi\)
\(138\) 0 0
\(139\) 0.353144 0.0299533 0.0149766 0.999888i \(-0.495233\pi\)
0.0149766 + 0.999888i \(0.495233\pi\)
\(140\) 8.62183 0.728678
\(141\) 0 0
\(142\) 38.0102 3.18974
\(143\) 0 0
\(144\) 0 0
\(145\) 14.2968 1.18729
\(146\) −3.79310 −0.313919
\(147\) 0 0
\(148\) −37.6146 −3.09190
\(149\) 0.511399 0.0418954 0.0209477 0.999781i \(-0.493332\pi\)
0.0209477 + 0.999781i \(0.493332\pi\)
\(150\) 0 0
\(151\) 0.977763 0.0795693 0.0397846 0.999208i \(-0.487333\pi\)
0.0397846 + 0.999208i \(0.487333\pi\)
\(152\) 50.9222 4.13033
\(153\) 0 0
\(154\) 0 0
\(155\) −10.3452 −0.830942
\(156\) 0 0
\(157\) −3.28963 −0.262541 −0.131270 0.991347i \(-0.541906\pi\)
−0.131270 + 0.991347i \(0.541906\pi\)
\(158\) 17.8141 1.41721
\(159\) 0 0
\(160\) −23.6160 −1.86701
\(161\) −5.05885 −0.398693
\(162\) 0 0
\(163\) 3.48225 0.272751 0.136375 0.990657i \(-0.456455\pi\)
0.136375 + 0.990657i \(0.456455\pi\)
\(164\) 25.3383 1.97859
\(165\) 0 0
\(166\) −15.5664 −1.20818
\(167\) 4.57477 0.354006 0.177003 0.984210i \(-0.443360\pi\)
0.177003 + 0.984210i \(0.443360\pi\)
\(168\) 0 0
\(169\) −10.7150 −0.824232
\(170\) −10.8755 −0.834114
\(171\) 0 0
\(172\) 10.1918 0.777120
\(173\) −5.72474 −0.435244 −0.217622 0.976033i \(-0.569830\pi\)
−0.217622 + 0.976033i \(0.569830\pi\)
\(174\) 0 0
\(175\) 2.06526 0.156119
\(176\) 0 0
\(177\) 0 0
\(178\) −43.5559 −3.26465
\(179\) −2.95701 −0.221017 −0.110509 0.993875i \(-0.535248\pi\)
−0.110509 + 0.993875i \(0.535248\pi\)
\(180\) 0 0
\(181\) −9.40004 −0.698699 −0.349350 0.936992i \(-0.613597\pi\)
−0.349350 + 0.936992i \(0.613597\pi\)
\(182\) −4.00873 −0.297147
\(183\) 0 0
\(184\) 40.6884 2.99959
\(185\) 12.8034 0.941328
\(186\) 0 0
\(187\) 0 0
\(188\) 27.8330 2.02993
\(189\) 0 0
\(190\) −28.7633 −2.08671
\(191\) 9.20911 0.666348 0.333174 0.942865i \(-0.391880\pi\)
0.333174 + 0.942865i \(0.391880\pi\)
\(192\) 0 0
\(193\) −1.49221 −0.107412 −0.0537059 0.998557i \(-0.517103\pi\)
−0.0537059 + 0.998557i \(0.517103\pi\)
\(194\) 31.9603 2.29461
\(195\) 0 0
\(196\) 5.03286 0.359490
\(197\) −3.37718 −0.240614 −0.120307 0.992737i \(-0.538388\pi\)
−0.120307 + 0.992737i \(0.538388\pi\)
\(198\) 0 0
\(199\) 27.8114 1.97150 0.985750 0.168215i \(-0.0538002\pi\)
0.985750 + 0.168215i \(0.0538002\pi\)
\(200\) −16.6109 −1.17457
\(201\) 0 0
\(202\) 14.1838 0.997971
\(203\) 8.34554 0.585742
\(204\) 0 0
\(205\) −8.62477 −0.602380
\(206\) 24.8693 1.73273
\(207\) 0 0
\(208\) 17.0268 1.18059
\(209\) 0 0
\(210\) 0 0
\(211\) −24.0068 −1.65270 −0.826350 0.563157i \(-0.809587\pi\)
−0.826350 + 0.563157i \(0.809587\pi\)
\(212\) −31.3914 −2.15597
\(213\) 0 0
\(214\) 32.2771 2.20642
\(215\) −3.46914 −0.236593
\(216\) 0 0
\(217\) −6.03882 −0.409942
\(218\) −16.7452 −1.13413
\(219\) 0 0
\(220\) 0 0
\(221\) 3.61860 0.243413
\(222\) 0 0
\(223\) 22.8178 1.52799 0.763997 0.645220i \(-0.223234\pi\)
0.763997 + 0.645220i \(0.223234\pi\)
\(224\) −13.7855 −0.921083
\(225\) 0 0
\(226\) −8.93091 −0.594075
\(227\) −14.4047 −0.956071 −0.478035 0.878341i \(-0.658651\pi\)
−0.478035 + 0.878341i \(0.658651\pi\)
\(228\) 0 0
\(229\) −3.79367 −0.250693 −0.125346 0.992113i \(-0.540004\pi\)
−0.125346 + 0.992113i \(0.540004\pi\)
\(230\) −22.9828 −1.51544
\(231\) 0 0
\(232\) −67.1233 −4.40686
\(233\) −27.4844 −1.80056 −0.900282 0.435307i \(-0.856640\pi\)
−0.900282 + 0.435307i \(0.856640\pi\)
\(234\) 0 0
\(235\) −9.47394 −0.618011
\(236\) −56.2384 −3.66081
\(237\) 0 0
\(238\) −6.34841 −0.411507
\(239\) −11.2335 −0.726636 −0.363318 0.931665i \(-0.618356\pi\)
−0.363318 + 0.931665i \(0.618356\pi\)
\(240\) 0 0
\(241\) 14.7496 0.950105 0.475052 0.879958i \(-0.342429\pi\)
0.475052 + 0.879958i \(0.342429\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 69.5020 4.44941
\(245\) −1.71311 −0.109446
\(246\) 0 0
\(247\) 9.57039 0.608949
\(248\) 48.5703 3.08422
\(249\) 0 0
\(250\) 32.0981 2.03006
\(251\) −7.61933 −0.480928 −0.240464 0.970658i \(-0.577300\pi\)
−0.240464 + 0.970658i \(0.577300\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −2.95358 −0.185324
\(255\) 0 0
\(256\) −2.50303 −0.156440
\(257\) 0.289382 0.0180512 0.00902559 0.999959i \(-0.497127\pi\)
0.00902559 + 0.999959i \(0.497127\pi\)
\(258\) 0 0
\(259\) 7.47381 0.464400
\(260\) −13.0329 −0.808265
\(261\) 0 0
\(262\) 38.1464 2.35669
\(263\) −12.3251 −0.759998 −0.379999 0.924987i \(-0.624076\pi\)
−0.379999 + 0.924987i \(0.624076\pi\)
\(264\) 0 0
\(265\) 10.6851 0.656383
\(266\) −16.7901 −1.02947
\(267\) 0 0
\(268\) 68.5341 4.18639
\(269\) −12.6511 −0.771349 −0.385674 0.922635i \(-0.626031\pi\)
−0.385674 + 0.922635i \(0.626031\pi\)
\(270\) 0 0
\(271\) 10.7502 0.653029 0.326515 0.945192i \(-0.394126\pi\)
0.326515 + 0.945192i \(0.394126\pi\)
\(272\) 26.9644 1.63496
\(273\) 0 0
\(274\) −7.23428 −0.437039
\(275\) 0 0
\(276\) 0 0
\(277\) −6.08896 −0.365850 −0.182925 0.983127i \(-0.558557\pi\)
−0.182925 + 0.983127i \(0.558557\pi\)
\(278\) 0.936521 0.0561688
\(279\) 0 0
\(280\) 13.7785 0.823425
\(281\) 8.61127 0.513705 0.256853 0.966451i \(-0.417314\pi\)
0.256853 + 0.966451i \(0.417314\pi\)
\(282\) 0 0
\(283\) 3.19557 0.189957 0.0949785 0.995479i \(-0.469722\pi\)
0.0949785 + 0.995479i \(0.469722\pi\)
\(284\) 72.1354 4.28045
\(285\) 0 0
\(286\) 0 0
\(287\) −5.03457 −0.297182
\(288\) 0 0
\(289\) −11.2694 −0.662907
\(290\) 37.9145 2.22642
\(291\) 0 0
\(292\) −7.19852 −0.421262
\(293\) 8.55173 0.499597 0.249799 0.968298i \(-0.419636\pi\)
0.249799 + 0.968298i \(0.419636\pi\)
\(294\) 0 0
\(295\) 19.1427 1.11453
\(296\) −60.1119 −3.49393
\(297\) 0 0
\(298\) 1.35621 0.0785629
\(299\) 7.64703 0.442239
\(300\) 0 0
\(301\) −2.02506 −0.116722
\(302\) 2.59298 0.149209
\(303\) 0 0
\(304\) 71.3148 4.09018
\(305\) −23.6574 −1.35462
\(306\) 0 0
\(307\) −3.49789 −0.199635 −0.0998176 0.995006i \(-0.531826\pi\)
−0.0998176 + 0.995006i \(0.531826\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −27.4349 −1.55820
\(311\) 3.69038 0.209262 0.104631 0.994511i \(-0.466634\pi\)
0.104631 + 0.994511i \(0.466634\pi\)
\(312\) 0 0
\(313\) −26.2642 −1.48454 −0.742270 0.670101i \(-0.766251\pi\)
−0.742270 + 0.670101i \(0.766251\pi\)
\(314\) −8.72394 −0.492320
\(315\) 0 0
\(316\) 33.8074 1.90182
\(317\) −13.0802 −0.734657 −0.367328 0.930091i \(-0.619727\pi\)
−0.367328 + 0.930091i \(0.619727\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −24.0359 −1.34365
\(321\) 0 0
\(322\) −13.4158 −0.747636
\(323\) 15.1561 0.843308
\(324\) 0 0
\(325\) −3.12188 −0.173171
\(326\) 9.23477 0.511466
\(327\) 0 0
\(328\) 40.4931 2.23586
\(329\) −5.53026 −0.304893
\(330\) 0 0
\(331\) 7.93676 0.436244 0.218122 0.975922i \(-0.430007\pi\)
0.218122 + 0.975922i \(0.430007\pi\)
\(332\) −29.5417 −1.62131
\(333\) 0 0
\(334\) 12.1321 0.663838
\(335\) −23.3280 −1.27454
\(336\) 0 0
\(337\) 10.0006 0.544765 0.272382 0.962189i \(-0.412188\pi\)
0.272382 + 0.962189i \(0.412188\pi\)
\(338\) −28.4157 −1.54561
\(339\) 0 0
\(340\) −20.6395 −1.11933
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 16.2876 0.878166
\(345\) 0 0
\(346\) −15.1818 −0.816176
\(347\) 5.40853 0.290345 0.145173 0.989406i \(-0.453626\pi\)
0.145173 + 0.989406i \(0.453626\pi\)
\(348\) 0 0
\(349\) −28.5311 −1.52723 −0.763617 0.645670i \(-0.776578\pi\)
−0.763617 + 0.645670i \(0.776578\pi\)
\(350\) 5.47698 0.292757
\(351\) 0 0
\(352\) 0 0
\(353\) 19.2226 1.02312 0.511559 0.859248i \(-0.329068\pi\)
0.511559 + 0.859248i \(0.329068\pi\)
\(354\) 0 0
\(355\) −24.5538 −1.30318
\(356\) −82.6600 −4.38097
\(357\) 0 0
\(358\) −7.84185 −0.414455
\(359\) −22.3528 −1.17974 −0.589868 0.807500i \(-0.700820\pi\)
−0.589868 + 0.807500i \(0.700820\pi\)
\(360\) 0 0
\(361\) 21.0845 1.10971
\(362\) −24.9285 −1.31021
\(363\) 0 0
\(364\) −7.60775 −0.398754
\(365\) 2.45027 0.128253
\(366\) 0 0
\(367\) −23.4448 −1.22381 −0.611905 0.790931i \(-0.709597\pi\)
−0.611905 + 0.790931i \(0.709597\pi\)
\(368\) 56.9827 2.97043
\(369\) 0 0
\(370\) 33.9541 1.76519
\(371\) 6.23728 0.323824
\(372\) 0 0
\(373\) −33.4536 −1.73216 −0.866082 0.499903i \(-0.833369\pi\)
−0.866082 + 0.499903i \(0.833369\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 44.4799 2.29388
\(377\) −12.6152 −0.649718
\(378\) 0 0
\(379\) −18.3796 −0.944094 −0.472047 0.881573i \(-0.656485\pi\)
−0.472047 + 0.881573i \(0.656485\pi\)
\(380\) −54.5868 −2.80025
\(381\) 0 0
\(382\) 24.4221 1.24954
\(383\) −21.3403 −1.09044 −0.545220 0.838293i \(-0.683554\pi\)
−0.545220 + 0.838293i \(0.683554\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3.95728 −0.201420
\(387\) 0 0
\(388\) 60.6540 3.07924
\(389\) −15.5214 −0.786969 −0.393484 0.919331i \(-0.628730\pi\)
−0.393484 + 0.919331i \(0.628730\pi\)
\(390\) 0 0
\(391\) 12.1102 0.612439
\(392\) 8.04301 0.406233
\(393\) 0 0
\(394\) −8.95614 −0.451204
\(395\) −11.5075 −0.579007
\(396\) 0 0
\(397\) 21.4777 1.07794 0.538968 0.842326i \(-0.318815\pi\)
0.538968 + 0.842326i \(0.318815\pi\)
\(398\) 73.7547 3.69699
\(399\) 0 0
\(400\) −23.2630 −1.16315
\(401\) −8.88106 −0.443499 −0.221749 0.975104i \(-0.571177\pi\)
−0.221749 + 0.975104i \(0.571177\pi\)
\(402\) 0 0
\(403\) 9.12837 0.454717
\(404\) 26.9180 1.33922
\(405\) 0 0
\(406\) 22.1320 1.09839
\(407\) 0 0
\(408\) 0 0
\(409\) 5.45776 0.269869 0.134934 0.990855i \(-0.456918\pi\)
0.134934 + 0.990855i \(0.456918\pi\)
\(410\) −22.8725 −1.12959
\(411\) 0 0
\(412\) 47.1968 2.32522
\(413\) 11.1742 0.549848
\(414\) 0 0
\(415\) 10.0555 0.493607
\(416\) 20.8384 1.02169
\(417\) 0 0
\(418\) 0 0
\(419\) −19.9805 −0.976114 −0.488057 0.872812i \(-0.662294\pi\)
−0.488057 + 0.872812i \(0.662294\pi\)
\(420\) 0 0
\(421\) −28.3122 −1.37985 −0.689926 0.723880i \(-0.742357\pi\)
−0.689926 + 0.723880i \(0.742357\pi\)
\(422\) −63.6651 −3.09917
\(423\) 0 0
\(424\) −50.1665 −2.43630
\(425\) −4.94395 −0.239817
\(426\) 0 0
\(427\) −13.8096 −0.668296
\(428\) 61.2553 2.96089
\(429\) 0 0
\(430\) −9.20000 −0.443664
\(431\) −31.7647 −1.53005 −0.765026 0.643999i \(-0.777274\pi\)
−0.765026 + 0.643999i \(0.777274\pi\)
\(432\) 0 0
\(433\) −13.1661 −0.632725 −0.316362 0.948638i \(-0.602462\pi\)
−0.316362 + 0.948638i \(0.602462\pi\)
\(434\) −16.0147 −0.768729
\(435\) 0 0
\(436\) −31.7789 −1.52193
\(437\) 32.0288 1.53214
\(438\) 0 0
\(439\) −9.81161 −0.468283 −0.234141 0.972203i \(-0.575228\pi\)
−0.234141 + 0.972203i \(0.575228\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 9.59636 0.456452
\(443\) −2.48514 −0.118072 −0.0590362 0.998256i \(-0.518803\pi\)
−0.0590362 + 0.998256i \(0.518803\pi\)
\(444\) 0 0
\(445\) 28.1362 1.33378
\(446\) 60.5118 2.86532
\(447\) 0 0
\(448\) −14.0306 −0.662883
\(449\) 15.6097 0.736667 0.368334 0.929694i \(-0.379928\pi\)
0.368334 + 0.929694i \(0.379928\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −16.9490 −0.797215
\(453\) 0 0
\(454\) −38.2005 −1.79284
\(455\) 2.58956 0.121400
\(456\) 0 0
\(457\) 13.6652 0.639233 0.319616 0.947547i \(-0.396446\pi\)
0.319616 + 0.947547i \(0.396446\pi\)
\(458\) −10.0606 −0.470103
\(459\) 0 0
\(460\) −43.6166 −2.03363
\(461\) −18.6545 −0.868825 −0.434412 0.900714i \(-0.643044\pi\)
−0.434412 + 0.900714i \(0.643044\pi\)
\(462\) 0 0
\(463\) −18.5697 −0.863006 −0.431503 0.902111i \(-0.642017\pi\)
−0.431503 + 0.902111i \(0.642017\pi\)
\(464\) −94.0039 −4.36402
\(465\) 0 0
\(466\) −72.8874 −3.37644
\(467\) −34.9579 −1.61766 −0.808828 0.588045i \(-0.799898\pi\)
−0.808828 + 0.588045i \(0.799898\pi\)
\(468\) 0 0
\(469\) −13.6173 −0.628790
\(470\) −25.1244 −1.15890
\(471\) 0 0
\(472\) −89.8745 −4.13681
\(473\) 0 0
\(474\) 0 0
\(475\) −13.0757 −0.599952
\(476\) −12.0480 −0.552218
\(477\) 0 0
\(478\) −29.7908 −1.36260
\(479\) −40.5443 −1.85252 −0.926259 0.376888i \(-0.876994\pi\)
−0.926259 + 0.376888i \(0.876994\pi\)
\(480\) 0 0
\(481\) −11.2975 −0.515123
\(482\) 39.1152 1.78165
\(483\) 0 0
\(484\) 0 0
\(485\) −20.6457 −0.937472
\(486\) 0 0
\(487\) 13.5569 0.614320 0.307160 0.951658i \(-0.400621\pi\)
0.307160 + 0.951658i \(0.400621\pi\)
\(488\) 111.071 5.02795
\(489\) 0 0
\(490\) −4.54308 −0.205236
\(491\) 23.4594 1.05871 0.529354 0.848401i \(-0.322435\pi\)
0.529354 + 0.848401i \(0.322435\pi\)
\(492\) 0 0
\(493\) −19.9781 −0.899768
\(494\) 25.3802 1.14191
\(495\) 0 0
\(496\) 68.0211 3.05424
\(497\) −14.3329 −0.642918
\(498\) 0 0
\(499\) 17.2876 0.773899 0.386949 0.922101i \(-0.373529\pi\)
0.386949 + 0.922101i \(0.373529\pi\)
\(500\) 60.9155 2.72422
\(501\) 0 0
\(502\) −20.2061 −0.901843
\(503\) −3.24592 −0.144728 −0.0723641 0.997378i \(-0.523054\pi\)
−0.0723641 + 0.997378i \(0.523054\pi\)
\(504\) 0 0
\(505\) −9.16247 −0.407724
\(506\) 0 0
\(507\) 0 0
\(508\) −5.60529 −0.248694
\(509\) 15.6005 0.691480 0.345740 0.938330i \(-0.387628\pi\)
0.345740 + 0.938330i \(0.387628\pi\)
\(510\) 0 0
\(511\) 1.43030 0.0632729
\(512\) −25.9129 −1.14520
\(513\) 0 0
\(514\) 0.767429 0.0338498
\(515\) −16.0651 −0.707911
\(516\) 0 0
\(517\) 0 0
\(518\) 19.8202 0.870850
\(519\) 0 0
\(520\) −20.8278 −0.913361
\(521\) 4.34383 0.190307 0.0951534 0.995463i \(-0.469666\pi\)
0.0951534 + 0.995463i \(0.469666\pi\)
\(522\) 0 0
\(523\) 12.4657 0.545085 0.272543 0.962144i \(-0.412135\pi\)
0.272543 + 0.962144i \(0.412135\pi\)
\(524\) 72.3940 3.16254
\(525\) 0 0
\(526\) −32.6856 −1.42516
\(527\) 14.4561 0.629718
\(528\) 0 0
\(529\) 2.59198 0.112695
\(530\) 28.3365 1.23086
\(531\) 0 0
\(532\) −31.8642 −1.38149
\(533\) 7.61034 0.329640
\(534\) 0 0
\(535\) −20.8504 −0.901439
\(536\) 109.524 4.73073
\(537\) 0 0
\(538\) −33.5500 −1.44644
\(539\) 0 0
\(540\) 0 0
\(541\) −12.5756 −0.540666 −0.270333 0.962767i \(-0.587134\pi\)
−0.270333 + 0.962767i \(0.587134\pi\)
\(542\) 28.5091 1.22457
\(543\) 0 0
\(544\) 33.0006 1.41489
\(545\) 10.8171 0.463352
\(546\) 0 0
\(547\) −0.250803 −0.0107236 −0.00536178 0.999986i \(-0.501707\pi\)
−0.00536178 + 0.999986i \(0.501707\pi\)
\(548\) −13.7292 −0.586481
\(549\) 0 0
\(550\) 0 0
\(551\) −52.8376 −2.25096
\(552\) 0 0
\(553\) −6.71734 −0.285650
\(554\) −16.1476 −0.686047
\(555\) 0 0
\(556\) 1.77732 0.0753753
\(557\) −28.3165 −1.19981 −0.599904 0.800072i \(-0.704795\pi\)
−0.599904 + 0.800072i \(0.704795\pi\)
\(558\) 0 0
\(559\) 3.06111 0.129471
\(560\) 19.2964 0.815421
\(561\) 0 0
\(562\) 22.8367 0.963308
\(563\) −16.2038 −0.682907 −0.341454 0.939899i \(-0.610919\pi\)
−0.341454 + 0.939899i \(0.610919\pi\)
\(564\) 0 0
\(565\) 5.76918 0.242711
\(566\) 8.47450 0.356210
\(567\) 0 0
\(568\) 115.280 4.83702
\(569\) 6.40589 0.268549 0.134274 0.990944i \(-0.457130\pi\)
0.134274 + 0.990944i \(0.457130\pi\)
\(570\) 0 0
\(571\) 25.9443 1.08574 0.542868 0.839818i \(-0.317338\pi\)
0.542868 + 0.839818i \(0.317338\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −13.3515 −0.557279
\(575\) −10.4479 −0.435706
\(576\) 0 0
\(577\) 8.96220 0.373101 0.186551 0.982445i \(-0.440269\pi\)
0.186551 + 0.982445i \(0.440269\pi\)
\(578\) −29.8860 −1.24309
\(579\) 0 0
\(580\) 71.9539 2.98772
\(581\) 5.86977 0.243519
\(582\) 0 0
\(583\) 0 0
\(584\) −11.5039 −0.476037
\(585\) 0 0
\(586\) 22.6788 0.936852
\(587\) −4.96137 −0.204778 −0.102389 0.994744i \(-0.532649\pi\)
−0.102389 + 0.994744i \(0.532649\pi\)
\(588\) 0 0
\(589\) 38.2332 1.57537
\(590\) 50.7655 2.08998
\(591\) 0 0
\(592\) −84.1847 −3.45997
\(593\) −30.7179 −1.26143 −0.630716 0.776013i \(-0.717239\pi\)
−0.630716 + 0.776013i \(0.717239\pi\)
\(594\) 0 0
\(595\) 4.10094 0.168122
\(596\) 2.57380 0.105427
\(597\) 0 0
\(598\) 20.2796 0.829294
\(599\) 32.7175 1.33680 0.668401 0.743801i \(-0.266979\pi\)
0.668401 + 0.743801i \(0.266979\pi\)
\(600\) 0 0
\(601\) −40.7669 −1.66292 −0.831458 0.555587i \(-0.812493\pi\)
−0.831458 + 0.555587i \(0.812493\pi\)
\(602\) −5.37036 −0.218880
\(603\) 0 0
\(604\) 4.92095 0.200230
\(605\) 0 0
\(606\) 0 0
\(607\) −25.5265 −1.03609 −0.518043 0.855354i \(-0.673339\pi\)
−0.518043 + 0.855354i \(0.673339\pi\)
\(608\) 87.2792 3.53964
\(609\) 0 0
\(610\) −62.7384 −2.54020
\(611\) 8.35963 0.338194
\(612\) 0 0
\(613\) −37.0000 −1.49442 −0.747208 0.664590i \(-0.768606\pi\)
−0.747208 + 0.664590i \(0.768606\pi\)
\(614\) −9.27624 −0.374359
\(615\) 0 0
\(616\) 0 0
\(617\) 43.0676 1.73384 0.866918 0.498452i \(-0.166098\pi\)
0.866918 + 0.498452i \(0.166098\pi\)
\(618\) 0 0
\(619\) 14.5508 0.584847 0.292424 0.956289i \(-0.405538\pi\)
0.292424 + 0.956289i \(0.405538\pi\)
\(620\) −52.0657 −2.09101
\(621\) 0 0
\(622\) 9.78672 0.392412
\(623\) 16.4241 0.658016
\(624\) 0 0
\(625\) −10.4084 −0.416335
\(626\) −69.6514 −2.78383
\(627\) 0 0
\(628\) −16.5562 −0.660666
\(629\) −17.8913 −0.713372
\(630\) 0 0
\(631\) 6.82874 0.271848 0.135924 0.990719i \(-0.456600\pi\)
0.135924 + 0.990719i \(0.456600\pi\)
\(632\) 54.0276 2.14910
\(633\) 0 0
\(634\) −34.6881 −1.37764
\(635\) 1.90795 0.0757148
\(636\) 0 0
\(637\) 1.51161 0.0598924
\(638\) 0 0
\(639\) 0 0
\(640\) −16.5100 −0.652616
\(641\) 11.4167 0.450934 0.225467 0.974251i \(-0.427609\pi\)
0.225467 + 0.974251i \(0.427609\pi\)
\(642\) 0 0
\(643\) −36.2291 −1.42874 −0.714368 0.699770i \(-0.753286\pi\)
−0.714368 + 0.699770i \(0.753286\pi\)
\(644\) −25.4605 −1.00328
\(645\) 0 0
\(646\) 40.1933 1.58138
\(647\) 24.1531 0.949557 0.474778 0.880105i \(-0.342528\pi\)
0.474778 + 0.880105i \(0.342528\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −8.27908 −0.324732
\(651\) 0 0
\(652\) 17.5257 0.686358
\(653\) 18.3457 0.717922 0.358961 0.933353i \(-0.383131\pi\)
0.358961 + 0.933353i \(0.383131\pi\)
\(654\) 0 0
\(655\) −24.6418 −0.962834
\(656\) 56.7093 2.21413
\(657\) 0 0
\(658\) −14.6660 −0.571740
\(659\) 9.32284 0.363166 0.181583 0.983376i \(-0.441878\pi\)
0.181583 + 0.983376i \(0.441878\pi\)
\(660\) 0 0
\(661\) −9.30120 −0.361775 −0.180887 0.983504i \(-0.557897\pi\)
−0.180887 + 0.983504i \(0.557897\pi\)
\(662\) 21.0479 0.818051
\(663\) 0 0
\(664\) −47.2106 −1.83213
\(665\) 10.8461 0.420593
\(666\) 0 0
\(667\) −42.2189 −1.63472
\(668\) 23.0242 0.890832
\(669\) 0 0
\(670\) −61.8647 −2.39004
\(671\) 0 0
\(672\) 0 0
\(673\) 35.9318 1.38507 0.692535 0.721385i \(-0.256494\pi\)
0.692535 + 0.721385i \(0.256494\pi\)
\(674\) 26.5210 1.02155
\(675\) 0 0
\(676\) −53.9272 −2.07412
\(677\) 47.4738 1.82456 0.912282 0.409562i \(-0.134318\pi\)
0.912282 + 0.409562i \(0.134318\pi\)
\(678\) 0 0
\(679\) −12.0516 −0.462498
\(680\) −32.9839 −1.26488
\(681\) 0 0
\(682\) 0 0
\(683\) 30.1415 1.15333 0.576667 0.816980i \(-0.304353\pi\)
0.576667 + 0.816980i \(0.304353\pi\)
\(684\) 0 0
\(685\) 4.67320 0.178554
\(686\) −2.65195 −0.101252
\(687\) 0 0
\(688\) 22.8102 0.869630
\(689\) −9.42837 −0.359192
\(690\) 0 0
\(691\) 45.7782 1.74149 0.870743 0.491739i \(-0.163638\pi\)
0.870743 + 0.491739i \(0.163638\pi\)
\(692\) −28.8118 −1.09526
\(693\) 0 0
\(694\) 14.3432 0.544459
\(695\) −0.604973 −0.0229479
\(696\) 0 0
\(697\) 12.0521 0.456505
\(698\) −75.6631 −2.86389
\(699\) 0 0
\(700\) 10.3942 0.392863
\(701\) −12.4242 −0.469257 −0.234629 0.972085i \(-0.575387\pi\)
−0.234629 + 0.972085i \(0.575387\pi\)
\(702\) 0 0
\(703\) −47.3184 −1.78465
\(704\) 0 0
\(705\) 0 0
\(706\) 50.9776 1.91857
\(707\) −5.34845 −0.201149
\(708\) 0 0
\(709\) −4.52276 −0.169856 −0.0849279 0.996387i \(-0.527066\pi\)
−0.0849279 + 0.996387i \(0.527066\pi\)
\(710\) −65.1155 −2.44374
\(711\) 0 0
\(712\) −132.099 −4.95061
\(713\) 30.5495 1.14409
\(714\) 0 0
\(715\) 0 0
\(716\) −14.8822 −0.556174
\(717\) 0 0
\(718\) −59.2786 −2.21226
\(719\) 8.32032 0.310296 0.155148 0.987891i \(-0.450415\pi\)
0.155148 + 0.987891i \(0.450415\pi\)
\(720\) 0 0
\(721\) −9.37773 −0.349245
\(722\) 55.9152 2.08095
\(723\) 0 0
\(724\) −47.3091 −1.75823
\(725\) 17.2357 0.640119
\(726\) 0 0
\(727\) 39.9612 1.48208 0.741040 0.671461i \(-0.234333\pi\)
0.741040 + 0.671461i \(0.234333\pi\)
\(728\) −12.1579 −0.450603
\(729\) 0 0
\(730\) 6.49799 0.240501
\(731\) 4.84771 0.179299
\(732\) 0 0
\(733\) −13.2877 −0.490793 −0.245396 0.969423i \(-0.578918\pi\)
−0.245396 + 0.969423i \(0.578918\pi\)
\(734\) −62.1746 −2.29491
\(735\) 0 0
\(736\) 69.7388 2.57061
\(737\) 0 0
\(738\) 0 0
\(739\) −6.54579 −0.240791 −0.120395 0.992726i \(-0.538416\pi\)
−0.120395 + 0.992726i \(0.538416\pi\)
\(740\) 64.4379 2.36879
\(741\) 0 0
\(742\) 16.5410 0.607239
\(743\) 33.2519 1.21989 0.609947 0.792442i \(-0.291191\pi\)
0.609947 + 0.792442i \(0.291191\pi\)
\(744\) 0 0
\(745\) −0.876081 −0.0320971
\(746\) −88.7175 −3.24818
\(747\) 0 0
\(748\) 0 0
\(749\) −12.1711 −0.444721
\(750\) 0 0
\(751\) −0.769312 −0.0280726 −0.0140363 0.999901i \(-0.504468\pi\)
−0.0140363 + 0.999901i \(0.504468\pi\)
\(752\) 62.2927 2.27158
\(753\) 0 0
\(754\) −33.4551 −1.21836
\(755\) −1.67501 −0.0609600
\(756\) 0 0
\(757\) −2.29424 −0.0833854 −0.0416927 0.999130i \(-0.513275\pi\)
−0.0416927 + 0.999130i \(0.513275\pi\)
\(758\) −48.7417 −1.77038
\(759\) 0 0
\(760\) −87.2351 −3.16435
\(761\) 3.99916 0.144970 0.0724848 0.997370i \(-0.476907\pi\)
0.0724848 + 0.997370i \(0.476907\pi\)
\(762\) 0 0
\(763\) 6.31429 0.228592
\(764\) 46.3481 1.67682
\(765\) 0 0
\(766\) −56.5936 −2.04481
\(767\) −16.8911 −0.609904
\(768\) 0 0
\(769\) 48.3136 1.74223 0.871116 0.491077i \(-0.163396\pi\)
0.871116 + 0.491077i \(0.163396\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.51010 −0.270294
\(773\) 13.4380 0.483331 0.241666 0.970360i \(-0.422306\pi\)
0.241666 + 0.970360i \(0.422306\pi\)
\(774\) 0 0
\(775\) −12.4717 −0.447998
\(776\) 96.9310 3.47962
\(777\) 0 0
\(778\) −41.1622 −1.47574
\(779\) 31.8751 1.14204
\(780\) 0 0
\(781\) 0 0
\(782\) 32.1157 1.14845
\(783\) 0 0
\(784\) 11.2640 0.402284
\(785\) 5.63549 0.201139
\(786\) 0 0
\(787\) −7.35759 −0.262270 −0.131135 0.991365i \(-0.541862\pi\)
−0.131135 + 0.991365i \(0.541862\pi\)
\(788\) −16.9969 −0.605489
\(789\) 0 0
\(790\) −30.5174 −1.08576
\(791\) 3.36767 0.119741
\(792\) 0 0
\(793\) 20.8749 0.741288
\(794\) 56.9579 2.02136
\(795\) 0 0
\(796\) 139.971 4.96114
\(797\) 4.82640 0.170960 0.0854799 0.996340i \(-0.472758\pi\)
0.0854799 + 0.996340i \(0.472758\pi\)
\(798\) 0 0
\(799\) 13.2387 0.468351
\(800\) −28.4707 −1.00659
\(801\) 0 0
\(802\) −23.5522 −0.831655
\(803\) 0 0
\(804\) 0 0
\(805\) 8.66636 0.305449
\(806\) 24.2080 0.852691
\(807\) 0 0
\(808\) 43.0176 1.51335
\(809\) 52.2852 1.83825 0.919125 0.393965i \(-0.128897\pi\)
0.919125 + 0.393965i \(0.128897\pi\)
\(810\) 0 0
\(811\) −35.3236 −1.24038 −0.620189 0.784453i \(-0.712944\pi\)
−0.620189 + 0.784453i \(0.712944\pi\)
\(812\) 42.0020 1.47398
\(813\) 0 0
\(814\) 0 0
\(815\) −5.96547 −0.208961
\(816\) 0 0
\(817\) 12.8211 0.448554
\(818\) 14.4737 0.506062
\(819\) 0 0
\(820\) −43.4073 −1.51585
\(821\) −30.4361 −1.06223 −0.531113 0.847301i \(-0.678226\pi\)
−0.531113 + 0.847301i \(0.678226\pi\)
\(822\) 0 0
\(823\) 45.8835 1.59940 0.799700 0.600400i \(-0.204992\pi\)
0.799700 + 0.600400i \(0.204992\pi\)
\(824\) 75.4251 2.62756
\(825\) 0 0
\(826\) 29.6336 1.03108
\(827\) −12.2298 −0.425270 −0.212635 0.977132i \(-0.568205\pi\)
−0.212635 + 0.977132i \(0.568205\pi\)
\(828\) 0 0
\(829\) 19.7416 0.685655 0.342828 0.939398i \(-0.388615\pi\)
0.342828 + 0.939398i \(0.388615\pi\)
\(830\) 26.6668 0.925620
\(831\) 0 0
\(832\) 21.2088 0.735284
\(833\) 2.39386 0.0829424
\(834\) 0 0
\(835\) −7.83707 −0.271213
\(836\) 0 0
\(837\) 0 0
\(838\) −52.9875 −1.83042
\(839\) −9.97411 −0.344345 −0.172172 0.985067i \(-0.555079\pi\)
−0.172172 + 0.985067i \(0.555079\pi\)
\(840\) 0 0
\(841\) 40.6481 1.40166
\(842\) −75.0827 −2.58752
\(843\) 0 0
\(844\) −120.823 −4.15890
\(845\) 18.3560 0.631465
\(846\) 0 0
\(847\) 0 0
\(848\) −70.2565 −2.41262
\(849\) 0 0
\(850\) −13.1111 −0.449708
\(851\) −37.8089 −1.29607
\(852\) 0 0
\(853\) −0.698961 −0.0239320 −0.0119660 0.999928i \(-0.503809\pi\)
−0.0119660 + 0.999928i \(0.503809\pi\)
\(854\) −36.6225 −1.25320
\(855\) 0 0
\(856\) 97.8920 3.34588
\(857\) 40.0835 1.36922 0.684612 0.728907i \(-0.259972\pi\)
0.684612 + 0.728907i \(0.259972\pi\)
\(858\) 0 0
\(859\) −28.0045 −0.955503 −0.477751 0.878495i \(-0.658548\pi\)
−0.477751 + 0.878495i \(0.658548\pi\)
\(860\) −17.4597 −0.595371
\(861\) 0 0
\(862\) −84.2386 −2.86918
\(863\) 26.0484 0.886698 0.443349 0.896349i \(-0.353790\pi\)
0.443349 + 0.896349i \(0.353790\pi\)
\(864\) 0 0
\(865\) 9.80710 0.333452
\(866\) −34.9160 −1.18649
\(867\) 0 0
\(868\) −30.3925 −1.03159
\(869\) 0 0
\(870\) 0 0
\(871\) 20.5842 0.697468
\(872\) −50.7858 −1.71983
\(873\) 0 0
\(874\) 84.9388 2.87310
\(875\) −12.1036 −0.409175
\(876\) 0 0
\(877\) −42.6421 −1.43992 −0.719961 0.694015i \(-0.755840\pi\)
−0.719961 + 0.694015i \(0.755840\pi\)
\(878\) −26.0199 −0.878130
\(879\) 0 0
\(880\) 0 0
\(881\) 5.07985 0.171144 0.0855722 0.996332i \(-0.472728\pi\)
0.0855722 + 0.996332i \(0.472728\pi\)
\(882\) 0 0
\(883\) 49.0484 1.65061 0.825305 0.564687i \(-0.191003\pi\)
0.825305 + 0.564687i \(0.191003\pi\)
\(884\) 18.2119 0.612532
\(885\) 0 0
\(886\) −6.59047 −0.221411
\(887\) −53.9270 −1.81069 −0.905346 0.424675i \(-0.860388\pi\)
−0.905346 + 0.424675i \(0.860388\pi\)
\(888\) 0 0
\(889\) 1.11374 0.0373536
\(890\) 74.6159 2.50113
\(891\) 0 0
\(892\) 114.839 3.84509
\(893\) 35.0134 1.17168
\(894\) 0 0
\(895\) 5.06567 0.169327
\(896\) −9.63748 −0.321965
\(897\) 0 0
\(898\) 41.3962 1.38141
\(899\) −50.3972 −1.68084
\(900\) 0 0
\(901\) −14.9312 −0.497430
\(902\) 0 0
\(903\) 0 0
\(904\) −27.0862 −0.900874
\(905\) 16.1033 0.535291
\(906\) 0 0
\(907\) 25.7626 0.855435 0.427717 0.903913i \(-0.359318\pi\)
0.427717 + 0.903913i \(0.359318\pi\)
\(908\) −72.4966 −2.40589
\(909\) 0 0
\(910\) 6.86739 0.227652
\(911\) 29.1872 0.967015 0.483507 0.875340i \(-0.339363\pi\)
0.483507 + 0.875340i \(0.339363\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 36.2396 1.19870
\(915\) 0 0
\(916\) −19.0930 −0.630851
\(917\) −14.3843 −0.475010
\(918\) 0 0
\(919\) −40.5202 −1.33664 −0.668320 0.743874i \(-0.732986\pi\)
−0.668320 + 0.743874i \(0.732986\pi\)
\(920\) −69.7036 −2.29806
\(921\) 0 0
\(922\) −49.4708 −1.62923
\(923\) 21.6658 0.713139
\(924\) 0 0
\(925\) 15.4354 0.507512
\(926\) −49.2459 −1.61832
\(927\) 0 0
\(928\) −115.048 −3.77662
\(929\) −5.13344 −0.168423 −0.0842113 0.996448i \(-0.526837\pi\)
−0.0842113 + 0.996448i \(0.526837\pi\)
\(930\) 0 0
\(931\) 6.33123 0.207498
\(932\) −138.325 −4.53099
\(933\) 0 0
\(934\) −92.7066 −3.03345
\(935\) 0 0
\(936\) 0 0
\(937\) −25.3284 −0.827443 −0.413722 0.910403i \(-0.635771\pi\)
−0.413722 + 0.910403i \(0.635771\pi\)
\(938\) −36.1125 −1.17912
\(939\) 0 0
\(940\) −47.6810 −1.55518
\(941\) −21.2749 −0.693541 −0.346770 0.937950i \(-0.612722\pi\)
−0.346770 + 0.937950i \(0.612722\pi\)
\(942\) 0 0
\(943\) 25.4692 0.829390
\(944\) −125.866 −4.09660
\(945\) 0 0
\(946\) 0 0
\(947\) 30.1418 0.979476 0.489738 0.871870i \(-0.337092\pi\)
0.489738 + 0.871870i \(0.337092\pi\)
\(948\) 0 0
\(949\) −2.16207 −0.0701837
\(950\) −34.6760 −1.12504
\(951\) 0 0
\(952\) −19.2539 −0.624021
\(953\) −8.93028 −0.289280 −0.144640 0.989484i \(-0.546202\pi\)
−0.144640 + 0.989484i \(0.546202\pi\)
\(954\) 0 0
\(955\) −15.7762 −0.510506
\(956\) −56.5367 −1.82853
\(957\) 0 0
\(958\) −107.522 −3.47387
\(959\) 2.72791 0.0880887
\(960\) 0 0
\(961\) 5.46735 0.176366
\(962\) −29.9605 −0.965965
\(963\) 0 0
\(964\) 74.2326 2.39087
\(965\) 2.55632 0.0822909
\(966\) 0 0
\(967\) −38.3461 −1.23313 −0.616564 0.787305i \(-0.711476\pi\)
−0.616564 + 0.787305i \(0.711476\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −54.7514 −1.75796
\(971\) −31.1508 −0.999676 −0.499838 0.866119i \(-0.666607\pi\)
−0.499838 + 0.866119i \(0.666607\pi\)
\(972\) 0 0
\(973\) −0.353144 −0.0113213
\(974\) 35.9522 1.15198
\(975\) 0 0
\(976\) 155.551 4.97908
\(977\) −29.7663 −0.952310 −0.476155 0.879361i \(-0.657970\pi\)
−0.476155 + 0.879361i \(0.657970\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −8.62183 −0.275414
\(981\) 0 0
\(982\) 62.2132 1.98530
\(983\) 39.9068 1.27283 0.636415 0.771347i \(-0.280417\pi\)
0.636415 + 0.771347i \(0.280417\pi\)
\(984\) 0 0
\(985\) 5.78548 0.184341
\(986\) −52.9810 −1.68726
\(987\) 0 0
\(988\) 48.1664 1.53238
\(989\) 10.2445 0.325755
\(990\) 0 0
\(991\) −10.7771 −0.342345 −0.171173 0.985241i \(-0.554756\pi\)
−0.171173 + 0.985241i \(0.554756\pi\)
\(992\) 83.2482 2.64313
\(993\) 0 0
\(994\) −38.0102 −1.20561
\(995\) −47.6440 −1.51042
\(996\) 0 0
\(997\) 1.13922 0.0360796 0.0180398 0.999837i \(-0.494257\pi\)
0.0180398 + 0.999837i \(0.494257\pi\)
\(998\) 45.8459 1.45123
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7623.2.a.cx.1.10 10
3.2 odd 2 2541.2.a.bq.1.1 10
11.5 even 5 693.2.m.j.190.1 20
11.9 even 5 693.2.m.j.631.1 20
11.10 odd 2 7623.2.a.cy.1.1 10
33.5 odd 10 231.2.j.g.190.5 yes 20
33.20 odd 10 231.2.j.g.169.5 20
33.32 even 2 2541.2.a.br.1.10 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.2.j.g.169.5 20 33.20 odd 10
231.2.j.g.190.5 yes 20 33.5 odd 10
693.2.m.j.190.1 20 11.5 even 5
693.2.m.j.631.1 20 11.9 even 5
2541.2.a.bq.1.1 10 3.2 odd 2
2541.2.a.br.1.10 10 33.32 even 2
7623.2.a.cx.1.10 10 1.1 even 1 trivial
7623.2.a.cy.1.1 10 11.10 odd 2