L(s) = 1 | + (−0.707 + 0.707i)2-s + (1.30 − 1.30i)3-s − 1.00i·4-s + (0.158 − 2.23i)5-s + 1.84i·6-s + (−0.941 + 2.47i)7-s + (0.707 + 0.707i)8-s − 0.414i·9-s + (1.46 + 1.68i)10-s + 2.82·11-s + (−1.30 − 1.30i)12-s + (−4.23 + 4.23i)13-s + (−1.08 − 2.41i)14-s + (−2.70 − 3.12i)15-s − 1.00·16-s + (−3.69 − 3.69i)17-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (0.754 − 0.754i)3-s − 0.500i·4-s + (0.0708 − 0.997i)5-s + 0.754i·6-s + (−0.355 + 0.934i)7-s + (0.250 + 0.250i)8-s − 0.138i·9-s + (0.463 + 0.534i)10-s + 0.852·11-s + (−0.377 − 0.377i)12-s + (−1.17 + 1.17i)13-s + (−0.289 − 0.645i)14-s + (−0.698 − 0.805i)15-s − 0.250·16-s + (−0.896 − 0.896i)17-s + ⋯ |
Λ(s)=(=(70s/2ΓC(s)L(s)(0.979+0.201i)Λ(2−s)
Λ(s)=(=(70s/2ΓC(s+1/2)L(s)(0.979+0.201i)Λ(1−s)
Degree: |
2 |
Conductor: |
70
= 2⋅5⋅7
|
Sign: |
0.979+0.201i
|
Analytic conductor: |
0.558952 |
Root analytic conductor: |
0.747631 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ70(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 70, ( :1/2), 0.979+0.201i)
|
Particular Values
L(1) |
≈ |
0.866432−0.0882676i |
L(21) |
≈ |
0.866432−0.0882676i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 5 | 1+(−0.158+2.23i)T |
| 7 | 1+(0.941−2.47i)T |
good | 3 | 1+(−1.30+1.30i)T−3iT2 |
| 11 | 1−2.82T+11T2 |
| 13 | 1+(4.23−4.23i)T−13iT2 |
| 17 | 1+(3.69+3.69i)T+17iT2 |
| 19 | 1−1.39T+19T2 |
| 23 | 1+(−0.414−0.414i)T+23iT2 |
| 29 | 1−0.828iT−29T2 |
| 31 | 1+1.53iT−31T2 |
| 37 | 1+(−2.58+2.58i)T−37iT2 |
| 41 | 1+3.69iT−41T2 |
| 43 | 1+(−4−4i)T+43iT2 |
| 47 | 1+(−1.08−1.08i)T+47iT2 |
| 53 | 1+(8.24+8.24i)T+53iT2 |
| 59 | 1+9.23T+59T2 |
| 61 | 1−6.43iT−61T2 |
| 67 | 1+(−10.4+10.4i)T−67iT2 |
| 71 | 1+0.585T+71T2 |
| 73 | 1+(−4.14+4.14i)T−73iT2 |
| 79 | 1+5.07iT−79T2 |
| 83 | 1+(−5.31+5.31i)T−83iT2 |
| 89 | 1−11.3T+89T2 |
| 97 | 1+(4.59+4.59i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.59657449981060710725166800223, −13.73460963481235310312476185764, −12.58552378802120746593658974618, −11.63020594915862570810532593404, −9.303791439939596796170436166651, −9.124475990955019392277946217372, −7.75192276755752972122424539104, −6.56757197148260786786250918424, −4.88199365542020945463572457055, −2.11189885120549725243992584967,
2.93893812303338789770631387506, 4.07963943454371272144407811349, 6.65806377191328104629730671593, 7.921038775700212950159562894875, 9.409940639487214685885581009183, 10.14868686409161879514923571805, 10.99134125831819050218991468451, 12.50552335021490797127893041958, 13.85977008777389613366498635225, 14.78470987378120487362941040263