L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.866 − 0.5i)3-s + (0.499 − 0.866i)4-s − 0.999·6-s + (−0.866 − 0.5i)7-s − 0.999i·8-s + (−0.866 + 0.499i)12-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (0.499 + 0.866i)21-s + (0.866 − 0.5i)23-s + (−0.499 + 0.866i)24-s + i·27-s + (−0.866 + 0.499i)28-s + 29-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.866 − 0.5i)3-s + (0.499 − 0.866i)4-s − 0.999·6-s + (−0.866 − 0.5i)7-s − 0.999i·8-s + (−0.866 + 0.499i)12-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (0.499 + 0.866i)21-s + (0.866 − 0.5i)23-s + (−0.499 + 0.866i)24-s + i·27-s + (−0.866 + 0.499i)28-s + 29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.553 + 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.553 + 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.024868594\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.024868594\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
good | 3 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 - iT - T^{2} \) |
| 47 | \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - iT - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57394624317188050831943098573, −9.883294561219959206858428489273, −8.802159915662516793696487388050, −7.20237275803542727261896525076, −6.64445824387371851371414029105, −5.89436365706709778425679089108, −4.94059903892542441235336612623, −3.79940559461868676251154183679, −2.73366311502421252743007216621, −0.984672679369739259079610876653,
2.57013339079330267561694860797, 3.67789542204281055769983056446, 4.82484768556985802310350256888, 5.52760340457769480408736273100, 6.30174284513544197052612291144, 7.10872698690888113528102105175, 8.274464093805326766521557867755, 9.226642579717488817866322626041, 10.31102105306279847053213948223, 11.07473173706261922537963971950