L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.866 − 0.5i)3-s + (0.499 − 0.866i)4-s − 0.999·6-s + (−0.866 − 0.5i)7-s − 0.999i·8-s + (−0.866 + 0.499i)12-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (0.499 + 0.866i)21-s + (0.866 − 0.5i)23-s + (−0.499 + 0.866i)24-s + i·27-s + (−0.866 + 0.499i)28-s + 29-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.866 − 0.5i)3-s + (0.499 − 0.866i)4-s − 0.999·6-s + (−0.866 − 0.5i)7-s − 0.999i·8-s + (−0.866 + 0.499i)12-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (0.499 + 0.866i)21-s + (0.866 − 0.5i)23-s + (−0.499 + 0.866i)24-s + i·27-s + (−0.866 + 0.499i)28-s + 29-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.553+0.832i)Λ(1−s)
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.553+0.832i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
−0.553+0.832i
|
Analytic conductor: |
0.349345 |
Root analytic conductor: |
0.591054 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :0), −0.553+0.832i)
|
Particular Values
L(21) |
≈ |
1.024868594 |
L(21) |
≈ |
1.024868594 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 5 | 1 |
| 7 | 1+(0.866+0.5i)T |
good | 3 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+T2 |
| 17 | 1+(−0.5−0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 29 | 1−T+T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1+(−0.5+0.866i)T2 |
| 41 | 1+T+T2 |
| 43 | 1−iT−T2 |
| 47 | 1+(−1.73+i)T+(0.5−0.866i)T2 |
| 53 | 1+(−0.5−0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−0.5−0.866i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1−iT−T2 |
| 89 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57394624317188050831943098573, −9.883294561219959206858428489273, −8.802159915662516793696487388050, −7.20237275803542727261896525076, −6.64445824387371851371414029105, −5.89436365706709778425679089108, −4.94059903892542441235336612623, −3.79940559461868676251154183679, −2.73366311502421252743007216621, −0.984672679369739259079610876653,
2.57013339079330267561694860797, 3.67789542204281055769983056446, 4.82484768556985802310350256888, 5.52760340457769480408736273100, 6.30174284513544197052612291144, 7.10872698690888113528102105175, 8.274464093805326766521557867755, 9.226642579717488817866322626041, 10.31102105306279847053213948223, 11.07473173706261922537963971950