L(s) = 1 | + (−4.50 − 7.81i)3-s + (5.65 + 48.6i)7-s + (−0.179 + 0.311i)9-s + (72.8 + 126. i)11-s + 209.·13-s + (93.5 + 162. i)17-s + (−153. − 88.6i)19-s + (354. − 263. i)21-s + (−288. − 166. i)23-s − 727.·27-s + 1.38e3·29-s + (−1.34e3 + 776. i)31-s + (657. − 1.13e3i)33-s + (−1.97e3 − 1.13e3i)37-s + (−946. − 1.63e3i)39-s + ⋯ |
L(s) = 1 | + (−0.501 − 0.867i)3-s + (0.115 + 0.993i)7-s + (−0.00222 + 0.00384i)9-s + (0.602 + 1.04i)11-s + 1.24·13-s + (0.323 + 0.560i)17-s + (−0.425 − 0.245i)19-s + (0.804 − 0.598i)21-s + (−0.546 − 0.315i)23-s − 0.997·27-s + 1.64·29-s + (−1.40 + 0.808i)31-s + (0.603 − 1.04i)33-s + (−1.44 − 0.831i)37-s + (−0.622 − 1.07i)39-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(0.0708−0.997i)Λ(5−s)
Λ(s)=(=(700s/2ΓC(s+2)L(s)(0.0708−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
0.0708−0.997i
|
Analytic conductor: |
72.3589 |
Root analytic conductor: |
8.50640 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :2), 0.0708−0.997i)
|
Particular Values
L(25) |
≈ |
1.234020212 |
L(21) |
≈ |
1.234020212 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1+(−5.65−48.6i)T |
good | 3 | 1+(4.50+7.81i)T+(−40.5+70.1i)T2 |
| 11 | 1+(−72.8−126.i)T+(−7.32e3+1.26e4i)T2 |
| 13 | 1−209.T+2.85e4T2 |
| 17 | 1+(−93.5−162.i)T+(−4.17e4+7.23e4i)T2 |
| 19 | 1+(153.+88.6i)T+(6.51e4+1.12e5i)T2 |
| 23 | 1+(288.+166.i)T+(1.39e5+2.42e5i)T2 |
| 29 | 1−1.38e3T+7.07e5T2 |
| 31 | 1+(1.34e3−776.i)T+(4.61e5−7.99e5i)T2 |
| 37 | 1+(1.97e3+1.13e3i)T+(9.37e5+1.62e6i)T2 |
| 41 | 1−781.iT−2.82e6T2 |
| 43 | 1−837.iT−3.41e6T2 |
| 47 | 1+(748.−1.29e3i)T+(−2.43e6−4.22e6i)T2 |
| 53 | 1+(3.86e3−2.23e3i)T+(3.94e6−6.83e6i)T2 |
| 59 | 1+(−3.81e3+2.20e3i)T+(6.05e6−1.04e7i)T2 |
| 61 | 1+(−2.25e3−1.30e3i)T+(6.92e6+1.19e7i)T2 |
| 67 | 1+(5.00e3−2.88e3i)T+(1.00e7−1.74e7i)T2 |
| 71 | 1−1.14e3T+2.54e7T2 |
| 73 | 1+(1.84e3+3.19e3i)T+(−1.41e7+2.45e7i)T2 |
| 79 | 1+(−1.34e3+2.33e3i)T+(−1.94e7−3.37e7i)T2 |
| 83 | 1+2.68e3T+4.74e7T2 |
| 89 | 1+(5.03e3+2.90e3i)T+(3.13e7+5.43e7i)T2 |
| 97 | 1−7.89e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.10200106694206550139826647348, −9.042747116551124385140286596027, −8.403717537616932805457122923739, −7.29021158710482696326586654230, −6.42766535422435829932853602677, −5.91006501491857597930851683053, −4.69876977254884902769531021900, −3.50152752871293747137839134766, −1.99725635461651181243845939515, −1.25365166954925303448680959248,
0.33168843631618051188287833601, 1.52509410466711084028451989781, 3.46005352089338137324079979942, 3.99357067200551983541106942316, 5.06824661888265399498281820188, 5.99497405046565798746301666506, 6.89383722989367026059286002470, 8.049742448410723172310598619425, 8.823196446979848072777309958568, 9.920707633848140129150734570677