L(s) = 1 | + (−4.50 + 7.81i)3-s + (5.65 − 48.6i)7-s + (−0.179 − 0.311i)9-s + (72.8 − 126. i)11-s + 209.·13-s + (93.5 − 162. i)17-s + (−153. + 88.6i)19-s + (354. + 263. i)21-s + (−288. + 166. i)23-s − 727.·27-s + 1.38e3·29-s + (−1.34e3 − 776. i)31-s + (657. + 1.13e3i)33-s + (−1.97e3 + 1.13e3i)37-s + (−946. + 1.63e3i)39-s + ⋯ |
L(s) = 1 | + (−0.501 + 0.867i)3-s + (0.115 − 0.993i)7-s + (−0.00222 − 0.00384i)9-s + (0.602 − 1.04i)11-s + 1.24·13-s + (0.323 − 0.560i)17-s + (−0.425 + 0.245i)19-s + (0.804 + 0.598i)21-s + (−0.546 + 0.315i)23-s − 0.997·27-s + 1.64·29-s + (−1.40 − 0.808i)31-s + (0.603 + 1.04i)33-s + (−1.44 + 0.831i)37-s + (−0.622 + 1.07i)39-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(0.0708+0.997i)Λ(5−s)
Λ(s)=(=(700s/2ΓC(s+2)L(s)(0.0708+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
0.0708+0.997i
|
Analytic conductor: |
72.3589 |
Root analytic conductor: |
8.50640 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(549,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :2), 0.0708+0.997i)
|
Particular Values
L(25) |
≈ |
1.234020212 |
L(21) |
≈ |
1.234020212 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1+(−5.65+48.6i)T |
good | 3 | 1+(4.50−7.81i)T+(−40.5−70.1i)T2 |
| 11 | 1+(−72.8+126.i)T+(−7.32e3−1.26e4i)T2 |
| 13 | 1−209.T+2.85e4T2 |
| 17 | 1+(−93.5+162.i)T+(−4.17e4−7.23e4i)T2 |
| 19 | 1+(153.−88.6i)T+(6.51e4−1.12e5i)T2 |
| 23 | 1+(288.−166.i)T+(1.39e5−2.42e5i)T2 |
| 29 | 1−1.38e3T+7.07e5T2 |
| 31 | 1+(1.34e3+776.i)T+(4.61e5+7.99e5i)T2 |
| 37 | 1+(1.97e3−1.13e3i)T+(9.37e5−1.62e6i)T2 |
| 41 | 1+781.iT−2.82e6T2 |
| 43 | 1+837.iT−3.41e6T2 |
| 47 | 1+(748.+1.29e3i)T+(−2.43e6+4.22e6i)T2 |
| 53 | 1+(3.86e3+2.23e3i)T+(3.94e6+6.83e6i)T2 |
| 59 | 1+(−3.81e3−2.20e3i)T+(6.05e6+1.04e7i)T2 |
| 61 | 1+(−2.25e3+1.30e3i)T+(6.92e6−1.19e7i)T2 |
| 67 | 1+(5.00e3+2.88e3i)T+(1.00e7+1.74e7i)T2 |
| 71 | 1−1.14e3T+2.54e7T2 |
| 73 | 1+(1.84e3−3.19e3i)T+(−1.41e7−2.45e7i)T2 |
| 79 | 1+(−1.34e3−2.33e3i)T+(−1.94e7+3.37e7i)T2 |
| 83 | 1+2.68e3T+4.74e7T2 |
| 89 | 1+(5.03e3−2.90e3i)T+(3.13e7−5.43e7i)T2 |
| 97 | 1−7.89e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.920707633848140129150734570677, −8.823196446979848072777309958568, −8.049742448410723172310598619425, −6.89383722989367026059286002470, −5.99497405046565798746301666506, −5.06824661888265399498281820188, −3.99357067200551983541106942316, −3.46005352089338137324079979942, −1.52509410466711084028451989781, −0.33168843631618051188287833601,
1.25365166954925303448680959248, 1.99725635461651181243845939515, 3.50152752871293747137839134766, 4.69876977254884902769531021900, 5.91006501491857597930851683053, 6.42766535422435829932853602677, 7.29021158710482696326586654230, 8.403717537616932805457122923739, 9.042747116551124385140286596027, 10.10200106694206550139826647348