Properties

Label 2-704-11.10-c4-0-5
Degree $2$
Conductor $704$
Sign $0.0909 - 0.995i$
Analytic cond. $72.7724$
Root an. cond. $8.53067$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 31·5-s − 54.7i·7-s − 72·9-s + (−11 + 120. i)11-s − 186. i·13-s − 93·15-s − 230. i·17-s − 98.5i·19-s − 164. i·21-s + 277·23-s + 336·25-s − 459·27-s − 1.27e3i·29-s − 1.36e3·31-s + ⋯
L(s)  = 1  + 0.333·3-s − 1.23·5-s − 1.11i·7-s − 0.888·9-s + (−0.0909 + 0.995i)11-s − 1.10i·13-s − 0.413·15-s − 0.795i·17-s − 0.273i·19-s − 0.372i·21-s + 0.523·23-s + 0.537·25-s − 0.629·27-s − 1.51i·29-s − 1.41·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0909 - 0.995i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.0909 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(704\)    =    \(2^{6} \cdot 11\)
Sign: $0.0909 - 0.995i$
Analytic conductor: \(72.7724\)
Root analytic conductor: \(8.53067\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{704} (65, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 704,\ (\ :2),\ 0.0909 - 0.995i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.4140669965\)
\(L(\frac12)\) \(\approx\) \(0.4140669965\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + (11 - 120. i)T \)
good3 \( 1 - 3T + 81T^{2} \)
5 \( 1 + 31T + 625T^{2} \)
7 \( 1 + 54.7iT - 2.40e3T^{2} \)
13 \( 1 + 186. iT - 2.85e4T^{2} \)
17 \( 1 + 230. iT - 8.35e4T^{2} \)
19 \( 1 + 98.5iT - 1.30e5T^{2} \)
23 \( 1 - 277T + 2.79e5T^{2} \)
29 \( 1 + 1.27e3iT - 7.07e5T^{2} \)
31 \( 1 + 1.36e3T + 9.23e5T^{2} \)
37 \( 1 + 167T + 1.87e6T^{2} \)
41 \( 1 - 1.06e3iT - 2.82e6T^{2} \)
43 \( 1 - 1.20e3iT - 3.41e6T^{2} \)
47 \( 1 - 1.70e3T + 4.87e6T^{2} \)
53 \( 1 + 4.52e3T + 7.89e6T^{2} \)
59 \( 1 - 2.36e3T + 1.21e7T^{2} \)
61 \( 1 - 3.96e3iT - 1.38e7T^{2} \)
67 \( 1 - 2.80e3T + 2.01e7T^{2} \)
71 \( 1 - 3.39e3T + 2.54e7T^{2} \)
73 \( 1 - 3.31e3iT - 2.83e7T^{2} \)
79 \( 1 - 6.09e3iT - 3.89e7T^{2} \)
83 \( 1 - 832. iT - 4.74e7T^{2} \)
89 \( 1 + 4.67e3T + 6.27e7T^{2} \)
97 \( 1 - 4.24e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06853075379051633131810298118, −9.189871428937191474857315233752, −7.995560491095974618971981760777, −7.67701933808390728888563043843, −6.84810277583866490133958792451, −5.42478531134846722144719256251, −4.39515106126636700288914919212, −3.57575103950064562959230794203, −2.58039569036918823535186869760, −0.77856916563066292387795694586, 0.12824625866850383960652776643, 1.89553145880538082450455823708, 3.16457504191411630658085904645, 3.81870389034627952496839244213, 5.18690037220127878714322917626, 6.01716556082621729049306510803, 7.13012360297796934388139903105, 8.175886485379394366901319879178, 8.730528984883917210880206520326, 9.239860900482506636705237142797

Graph of the $Z$-function along the critical line