L(s) = 1 | + 3·3-s − 31·5-s − 54.7i·7-s − 72·9-s + (−11 + 120. i)11-s − 186. i·13-s − 93·15-s − 230. i·17-s − 98.5i·19-s − 164. i·21-s + 277·23-s + 336·25-s − 459·27-s − 1.27e3i·29-s − 1.36e3·31-s + ⋯ |
L(s) = 1 | + 0.333·3-s − 1.23·5-s − 1.11i·7-s − 0.888·9-s + (−0.0909 + 0.995i)11-s − 1.10i·13-s − 0.413·15-s − 0.795i·17-s − 0.273i·19-s − 0.372i·21-s + 0.523·23-s + 0.537·25-s − 0.629·27-s − 1.51i·29-s − 1.41·31-s + ⋯ |
Λ(s)=(=(704s/2ΓC(s)L(s)(0.0909−0.995i)Λ(5−s)
Λ(s)=(=(704s/2ΓC(s+2)L(s)(0.0909−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
704
= 26⋅11
|
Sign: |
0.0909−0.995i
|
Analytic conductor: |
72.7724 |
Root analytic conductor: |
8.53067 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ704(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 704, ( :2), 0.0909−0.995i)
|
Particular Values
L(25) |
≈ |
0.4140669965 |
L(21) |
≈ |
0.4140669965 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(11−120.i)T |
good | 3 | 1−3T+81T2 |
| 5 | 1+31T+625T2 |
| 7 | 1+54.7iT−2.40e3T2 |
| 13 | 1+186.iT−2.85e4T2 |
| 17 | 1+230.iT−8.35e4T2 |
| 19 | 1+98.5iT−1.30e5T2 |
| 23 | 1−277T+2.79e5T2 |
| 29 | 1+1.27e3iT−7.07e5T2 |
| 31 | 1+1.36e3T+9.23e5T2 |
| 37 | 1+167T+1.87e6T2 |
| 41 | 1−1.06e3iT−2.82e6T2 |
| 43 | 1−1.20e3iT−3.41e6T2 |
| 47 | 1−1.70e3T+4.87e6T2 |
| 53 | 1+4.52e3T+7.89e6T2 |
| 59 | 1−2.36e3T+1.21e7T2 |
| 61 | 1−3.96e3iT−1.38e7T2 |
| 67 | 1−2.80e3T+2.01e7T2 |
| 71 | 1−3.39e3T+2.54e7T2 |
| 73 | 1−3.31e3iT−2.83e7T2 |
| 79 | 1−6.09e3iT−3.89e7T2 |
| 83 | 1−832.iT−4.74e7T2 |
| 89 | 1+4.67e3T+6.27e7T2 |
| 97 | 1−4.24e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06853075379051633131810298118, −9.189871428937191474857315233752, −7.995560491095974618971981760777, −7.67701933808390728888563043843, −6.84810277583866490133958792451, −5.42478531134846722144719256251, −4.39515106126636700288914919212, −3.57575103950064562959230794203, −2.58039569036918823535186869760, −0.77856916563066292387795694586,
0.12824625866850383960652776643, 1.89553145880538082450455823708, 3.16457504191411630658085904645, 3.81870389034627952496839244213, 5.18690037220127878714322917626, 6.01716556082621729049306510803, 7.13012360297796934388139903105, 8.175886485379394366901319879178, 8.730528984883917210880206520326, 9.239860900482506636705237142797