Properties

Label 2-72-72.11-c1-0-3
Degree 22
Conductor 7272
Sign 0.870+0.491i0.870 + 0.491i
Analytic cond. 0.5749220.574922
Root an. cond. 0.7582360.758236
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.22 − 0.707i)2-s + (1.72 − 0.158i)3-s + (0.999 + 1.73i)4-s + (−2.22 − 1.02i)6-s − 2.82i·8-s + (2.94 − 0.548i)9-s + (−3.27 − 1.89i)11-s + (1.99 + 2.82i)12-s + (−2.00 + 3.46i)16-s + 8.02i·17-s + (−3.99 − 1.41i)18-s − 8.34·19-s + (2.67 + 4.63i)22-s + (−0.449 − 4.87i)24-s + (2.5 − 4.33i)25-s + ⋯
L(s)  = 1  + (−0.866 − 0.499i)2-s + (0.995 − 0.0917i)3-s + (0.499 + 0.866i)4-s + (−0.908 − 0.418i)6-s − 0.999i·8-s + (0.983 − 0.182i)9-s + (−0.987 − 0.570i)11-s + (0.577 + 0.816i)12-s + (−0.500 + 0.866i)16-s + 1.94i·17-s + (−0.942 − 0.333i)18-s − 1.91·19-s + (0.570 + 0.987i)22-s + (−0.0917 − 0.995i)24-s + (0.5 − 0.866i)25-s + ⋯

Functional equation

Λ(s)=(72s/2ΓC(s)L(s)=((0.870+0.491i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.870 + 0.491i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(72s/2ΓC(s+1/2)L(s)=((0.870+0.491i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.870 + 0.491i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 7272    =    23322^{3} \cdot 3^{2}
Sign: 0.870+0.491i0.870 + 0.491i
Analytic conductor: 0.5749220.574922
Root analytic conductor: 0.7582360.758236
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ72(11,)\chi_{72} (11, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 72, ( :1/2), 0.870+0.491i)(2,\ 72,\ (\ :1/2),\ 0.870 + 0.491i)

Particular Values

L(1)L(1) \approx 0.7977400.209813i0.797740 - 0.209813i
L(12)L(\frac12) \approx 0.7977400.209813i0.797740 - 0.209813i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.22+0.707i)T 1 + (1.22 + 0.707i)T
3 1+(1.72+0.158i)T 1 + (-1.72 + 0.158i)T
good5 1+(2.5+4.33i)T2 1 + (-2.5 + 4.33i)T^{2}
7 1+(3.5+6.06i)T2 1 + (3.5 + 6.06i)T^{2}
11 1+(3.27+1.89i)T+(5.5+9.52i)T2 1 + (3.27 + 1.89i)T + (5.5 + 9.52i)T^{2}
13 1+(6.511.2i)T2 1 + (6.5 - 11.2i)T^{2}
17 18.02iT17T2 1 - 8.02iT - 17T^{2}
19 1+8.34T+19T2 1 + 8.34T + 19T^{2}
23 1+(11.5+19.9i)T2 1 + (-11.5 + 19.9i)T^{2}
29 1+(14.525.1i)T2 1 + (-14.5 - 25.1i)T^{2}
31 1+(15.526.8i)T2 1 + (15.5 - 26.8i)T^{2}
37 137T2 1 - 37T^{2}
41 1+(0.3980.230i)T+(20.535.5i)T2 1 + (0.398 - 0.230i)T + (20.5 - 35.5i)T^{2}
43 1+(1.17+2.03i)T+(21.537.2i)T2 1 + (-1.17 + 2.03i)T + (-21.5 - 37.2i)T^{2}
47 1+(23.540.7i)T2 1 + (-23.5 - 40.7i)T^{2}
53 1+53T2 1 + 53T^{2}
59 1+(10.6+6.13i)T+(29.551.0i)T2 1 + (-10.6 + 6.13i)T + (29.5 - 51.0i)T^{2}
61 1+(30.5+52.8i)T2 1 + (30.5 + 52.8i)T^{2}
67 1+(7.1712.4i)T+(33.5+58.0i)T2 1 + (-7.17 - 12.4i)T + (-33.5 + 58.0i)T^{2}
71 1+71T2 1 + 71T^{2}
73 113.6T+73T2 1 - 13.6T + 73T^{2}
79 1+(39.5+68.4i)T2 1 + (39.5 + 68.4i)T^{2}
83 1+(2.44+1.41i)T+(41.5+71.8i)T2 1 + (2.44 + 1.41i)T + (41.5 + 71.8i)T^{2}
89 1+5.65iT89T2 1 + 5.65iT - 89T^{2}
97 1+(9.8417.0i)T+(48.584.0i)T2 1 + (9.84 - 17.0i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−14.68592575309039060882362215601, −13.13253616871827371677520951235, −12.59712718113872897415425981215, −10.82257133950445822006569975190, −10.12341874679207186463613675070, −8.542133080835188017557302649565, −8.193271439978103121820558346488, −6.56921485253876360296646337170, −3.89150805359828389086771997983, −2.26572919897296598094005540027, 2.46497567617430314622651811016, 4.91148107712993364417179104961, 6.88674705314451405041949624189, 7.86177047040072258534126108663, 8.976847986167529653157356874982, 9.918566536362943500092950394430, 11.01267020733973071648887699286, 12.75793173445158789758196750730, 13.94325831746413774485719409405, 14.99026046468207165228230224067

Graph of the ZZ-function along the critical line