L(s) = 1 | + (−1.22 + 0.707i)2-s + (1.72 + 0.158i)3-s + (0.999 − 1.73i)4-s + (−2.22 + 1.02i)6-s + 2.82i·8-s + (2.94 + 0.548i)9-s + (−3.27 + 1.89i)11-s + (1.99 − 2.82i)12-s + (−2.00 − 3.46i)16-s − 8.02i·17-s + (−3.99 + 1.41i)18-s − 8.34·19-s + (2.67 − 4.63i)22-s + (−0.449 + 4.87i)24-s + (2.5 + 4.33i)25-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.499i)2-s + (0.995 + 0.0917i)3-s + (0.499 − 0.866i)4-s + (−0.908 + 0.418i)6-s + 0.999i·8-s + (0.983 + 0.182i)9-s + (−0.987 + 0.570i)11-s + (0.577 − 0.816i)12-s + (−0.500 − 0.866i)16-s − 1.94i·17-s + (−0.942 + 0.333i)18-s − 1.91·19-s + (0.570 − 0.987i)22-s + (−0.0917 + 0.995i)24-s + (0.5 + 0.866i)25-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(0.870−0.491i)Λ(2−s)
Λ(s)=(=(72s/2ΓC(s+1/2)L(s)(0.870−0.491i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
0.870−0.491i
|
Analytic conductor: |
0.574922 |
Root analytic conductor: |
0.758236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :1/2), 0.870−0.491i)
|
Particular Values
L(1) |
≈ |
0.797740+0.209813i |
L(21) |
≈ |
0.797740+0.209813i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.22−0.707i)T |
| 3 | 1+(−1.72−0.158i)T |
good | 5 | 1+(−2.5−4.33i)T2 |
| 7 | 1+(3.5−6.06i)T2 |
| 11 | 1+(3.27−1.89i)T+(5.5−9.52i)T2 |
| 13 | 1+(6.5+11.2i)T2 |
| 17 | 1+8.02iT−17T2 |
| 19 | 1+8.34T+19T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+(−14.5+25.1i)T2 |
| 31 | 1+(15.5+26.8i)T2 |
| 37 | 1−37T2 |
| 41 | 1+(0.398+0.230i)T+(20.5+35.5i)T2 |
| 43 | 1+(−1.17−2.03i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−23.5+40.7i)T2 |
| 53 | 1+53T2 |
| 59 | 1+(−10.6−6.13i)T+(29.5+51.0i)T2 |
| 61 | 1+(30.5−52.8i)T2 |
| 67 | 1+(−7.17+12.4i)T+(−33.5−58.0i)T2 |
| 71 | 1+71T2 |
| 73 | 1−13.6T+73T2 |
| 79 | 1+(39.5−68.4i)T2 |
| 83 | 1+(2.44−1.41i)T+(41.5−71.8i)T2 |
| 89 | 1−5.65iT−89T2 |
| 97 | 1+(9.84+17.0i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.99026046468207165228230224067, −13.94325831746413774485719409405, −12.75793173445158789758196750730, −11.01267020733973071648887699286, −9.918566536362943500092950394430, −8.976847986167529653157356874982, −7.86177047040072258534126108663, −6.88674705314451405041949624189, −4.91148107712993364417179104961, −2.46497567617430314622651811016,
2.26572919897296598094005540027, 3.89150805359828389086771997983, 6.56921485253876360296646337170, 8.193271439978103121820558346488, 8.542133080835188017557302649565, 10.12341874679207186463613675070, 10.82257133950445822006569975190, 12.59712718113872897415425981215, 13.13253616871827371677520951235, 14.68592575309039060882362215601