L(s) = 1 | + (−1.80 − 2.17i)2-s + (−3.91 − 3.42i)3-s + (−1.46 + 7.86i)4-s + (7.74 + 13.4i)5-s + (−0.371 + 14.6i)6-s + (−4.08 − 2.35i)7-s + (19.7 − 11.0i)8-s + (3.59 + 26.7i)9-s + (15.1 − 41.1i)10-s + (4.32 + 2.49i)11-s + (32.6 − 25.7i)12-s + (66.4 − 38.3i)13-s + (2.25 + 13.1i)14-s + (15.6 − 79.0i)15-s + (−59.7 − 23.0i)16-s + 120. i·17-s + ⋯ |
L(s) = 1 | + (−0.639 − 0.769i)2-s + (−0.752 − 0.658i)3-s + (−0.182 + 0.983i)4-s + (0.693 + 1.20i)5-s + (−0.0252 + 0.999i)6-s + (−0.220 − 0.127i)7-s + (0.873 − 0.487i)8-s + (0.132 + 0.991i)9-s + (0.480 − 1.30i)10-s + (0.118 + 0.0685i)11-s + (0.784 − 0.619i)12-s + (1.41 − 0.818i)13-s + (0.0430 + 0.250i)14-s + (0.268 − 1.36i)15-s + (−0.933 − 0.359i)16-s + 1.72i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0552i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0552i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.902292 - 0.0249448i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.902292 - 0.0249448i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.80 + 2.17i)T \) |
| 3 | \( 1 + (3.91 + 3.42i)T \) |
good | 5 | \( 1 + (-7.74 - 13.4i)T + (-62.5 + 108. i)T^{2} \) |
| 7 | \( 1 + (4.08 + 2.35i)T + (171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (-4.32 - 2.49i)T + (665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-66.4 + 38.3i)T + (1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 - 120. iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 30.8T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-91.9 - 159. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-28.8 + 49.9i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (37.8 - 21.8i)T + (1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 - 108. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + (230. - 133. i)T + (3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (105. - 181. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-191. + 332. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 - 419.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (17.1 - 9.91i)T + (1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-158. - 91.4i)T + (1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (215. + 373. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 772.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 433.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-644. - 372. i)T + (2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (408. + 235. i)T + (2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 206. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (-713. + 1.23e3i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.55295952558952452701592322398, −13.07064209235846150379263086051, −11.62180636349010140816520465424, −10.73761277252149698920135828252, −10.09691073964804319866231829844, −8.338657996349754676127543698095, −7.01583587799939749787375844818, −5.90581879505814656616080057838, −3.35122073978563504164958518563, −1.53524323135448398526695052450,
0.920384015480600605360090159118, 4.63481230646425496867790029900, 5.63777184837284400118144680563, 6.77909355345201367566808049869, 8.894460087751121125891410633770, 9.220936306144582194223931772680, 10.53690067021129966330984352147, 11.74730571715629264487219767236, 13.22347656165244026723334348791, 14.27759214656699717062522777429