L(s) = 1 | + (−1.80 − 2.17i)2-s + (−3.91 − 3.42i)3-s + (−1.46 + 7.86i)4-s + (7.74 + 13.4i)5-s + (−0.371 + 14.6i)6-s + (−4.08 − 2.35i)7-s + (19.7 − 11.0i)8-s + (3.59 + 26.7i)9-s + (15.1 − 41.1i)10-s + (4.32 + 2.49i)11-s + (32.6 − 25.7i)12-s + (66.4 − 38.3i)13-s + (2.25 + 13.1i)14-s + (15.6 − 79.0i)15-s + (−59.7 − 23.0i)16-s + 120. i·17-s + ⋯ |
L(s) = 1 | + (−0.639 − 0.769i)2-s + (−0.752 − 0.658i)3-s + (−0.182 + 0.983i)4-s + (0.693 + 1.20i)5-s + (−0.0252 + 0.999i)6-s + (−0.220 − 0.127i)7-s + (0.873 − 0.487i)8-s + (0.132 + 0.991i)9-s + (0.480 − 1.30i)10-s + (0.118 + 0.0685i)11-s + (0.784 − 0.619i)12-s + (1.41 − 0.818i)13-s + (0.0430 + 0.250i)14-s + (0.268 − 1.36i)15-s + (−0.933 − 0.359i)16-s + 1.72i·17-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(0.998+0.0552i)Λ(4−s)
Λ(s)=(=(72s/2ΓC(s+3/2)L(s)(0.998+0.0552i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
0.998+0.0552i
|
Analytic conductor: |
4.24813 |
Root analytic conductor: |
2.06110 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :3/2), 0.998+0.0552i)
|
Particular Values
L(2) |
≈ |
0.902292−0.0249448i |
L(21) |
≈ |
0.902292−0.0249448i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.80+2.17i)T |
| 3 | 1+(3.91+3.42i)T |
good | 5 | 1+(−7.74−13.4i)T+(−62.5+108.i)T2 |
| 7 | 1+(4.08+2.35i)T+(171.5+297.i)T2 |
| 11 | 1+(−4.32−2.49i)T+(665.5+1.15e3i)T2 |
| 13 | 1+(−66.4+38.3i)T+(1.09e3−1.90e3i)T2 |
| 17 | 1−120.iT−4.91e3T2 |
| 19 | 1−30.8T+6.85e3T2 |
| 23 | 1+(−91.9−159.i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(−28.8+49.9i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+(37.8−21.8i)T+(1.48e4−2.57e4i)T2 |
| 37 | 1−108.iT−5.06e4T2 |
| 41 | 1+(230.−133.i)T+(3.44e4−5.96e4i)T2 |
| 43 | 1+(105.−181.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+(−191.+332.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1−419.T+1.48e5T2 |
| 59 | 1+(17.1−9.91i)T+(1.02e5−1.77e5i)T2 |
| 61 | 1+(−158.−91.4i)T+(1.13e5+1.96e5i)T2 |
| 67 | 1+(215.+373.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+772.T+3.57e5T2 |
| 73 | 1+433.T+3.89e5T2 |
| 79 | 1+(−644.−372.i)T+(2.46e5+4.26e5i)T2 |
| 83 | 1+(408.+235.i)T+(2.85e5+4.95e5i)T2 |
| 89 | 1−206.iT−7.04e5T2 |
| 97 | 1+(−713.+1.23e3i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.55295952558952452701592322398, −13.07064209235846150379263086051, −11.62180636349010140816520465424, −10.73761277252149698920135828252, −10.09691073964804319866231829844, −8.338657996349754676127543698095, −7.01583587799939749787375844818, −5.90581879505814656616080057838, −3.35122073978563504164958518563, −1.53524323135448398526695052450,
0.920384015480600605360090159118, 4.63481230646425496867790029900, 5.63777184837284400118144680563, 6.77909355345201367566808049869, 8.894460087751121125891410633770, 9.220936306144582194223931772680, 10.53690067021129966330984352147, 11.74730571715629264487219767236, 13.22347656165244026723334348791, 14.27759214656699717062522777429