L(s) = 1 | + (−1.80 + 2.17i)2-s + (−3.91 + 3.42i)3-s + (−1.46 − 7.86i)4-s + (7.74 − 13.4i)5-s + (−0.371 − 14.6i)6-s + (−4.08 + 2.35i)7-s + (19.7 + 11.0i)8-s + (3.59 − 26.7i)9-s + (15.1 + 41.1i)10-s + (4.32 − 2.49i)11-s + (32.6 + 25.7i)12-s + (66.4 + 38.3i)13-s + (2.25 − 13.1i)14-s + (15.6 + 79.0i)15-s + (−59.7 + 23.0i)16-s − 120. i·17-s + ⋯ |
L(s) = 1 | + (−0.639 + 0.769i)2-s + (−0.752 + 0.658i)3-s + (−0.182 − 0.983i)4-s + (0.693 − 1.20i)5-s + (−0.0252 − 0.999i)6-s + (−0.220 + 0.127i)7-s + (0.873 + 0.487i)8-s + (0.132 − 0.991i)9-s + (0.480 + 1.30i)10-s + (0.118 − 0.0685i)11-s + (0.784 + 0.619i)12-s + (1.41 + 0.818i)13-s + (0.0430 − 0.250i)14-s + (0.268 + 1.36i)15-s + (−0.933 + 0.359i)16-s − 1.72i·17-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(0.998−0.0552i)Λ(4−s)
Λ(s)=(=(72s/2ΓC(s+3/2)L(s)(0.998−0.0552i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
0.998−0.0552i
|
Analytic conductor: |
4.24813 |
Root analytic conductor: |
2.06110 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :3/2), 0.998−0.0552i)
|
Particular Values
L(2) |
≈ |
0.902292+0.0249448i |
L(21) |
≈ |
0.902292+0.0249448i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.80−2.17i)T |
| 3 | 1+(3.91−3.42i)T |
good | 5 | 1+(−7.74+13.4i)T+(−62.5−108.i)T2 |
| 7 | 1+(4.08−2.35i)T+(171.5−297.i)T2 |
| 11 | 1+(−4.32+2.49i)T+(665.5−1.15e3i)T2 |
| 13 | 1+(−66.4−38.3i)T+(1.09e3+1.90e3i)T2 |
| 17 | 1+120.iT−4.91e3T2 |
| 19 | 1−30.8T+6.85e3T2 |
| 23 | 1+(−91.9+159.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(−28.8−49.9i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+(37.8+21.8i)T+(1.48e4+2.57e4i)T2 |
| 37 | 1+108.iT−5.06e4T2 |
| 41 | 1+(230.+133.i)T+(3.44e4+5.96e4i)T2 |
| 43 | 1+(105.+181.i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1+(−191.−332.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1−419.T+1.48e5T2 |
| 59 | 1+(17.1+9.91i)T+(1.02e5+1.77e5i)T2 |
| 61 | 1+(−158.+91.4i)T+(1.13e5−1.96e5i)T2 |
| 67 | 1+(215.−373.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+772.T+3.57e5T2 |
| 73 | 1+433.T+3.89e5T2 |
| 79 | 1+(−644.+372.i)T+(2.46e5−4.26e5i)T2 |
| 83 | 1+(408.−235.i)T+(2.85e5−4.95e5i)T2 |
| 89 | 1+206.iT−7.04e5T2 |
| 97 | 1+(−713.−1.23e3i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.27759214656699717062522777429, −13.22347656165244026723334348791, −11.74730571715629264487219767236, −10.53690067021129966330984352147, −9.220936306144582194223931772680, −8.894460087751121125891410633770, −6.77909355345201367566808049869, −5.63777184837284400118144680563, −4.63481230646425496867790029900, −0.920384015480600605360090159118,
1.53524323135448398526695052450, 3.35122073978563504164958518563, 5.90581879505814656616080057838, 7.01583587799939749787375844818, 8.338657996349754676127543698095, 10.09691073964804319866231829844, 10.73761277252149698920135828252, 11.62180636349010140816520465424, 13.07064209235846150379263086051, 13.55295952558952452701592322398