L(s) = 1 | + (−1.34 + 0.436i)2-s + (1.52 + 0.816i)3-s + (1.61 − 1.17i)4-s + (−0.602 − 0.348i)5-s + (−2.41 − 0.431i)6-s + (0.795 + 1.37i)7-s + (−1.66 + 2.28i)8-s + (1.66 + 2.49i)9-s + (0.962 + 0.205i)10-s + (2.37 − 1.36i)11-s + (3.43 − 0.470i)12-s + (−4.76 − 2.75i)13-s + (−1.67 − 1.50i)14-s + (−0.636 − 1.02i)15-s + (1.24 − 3.80i)16-s − 5.65·17-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.308i)2-s + (0.882 + 0.471i)3-s + (0.809 − 0.586i)4-s + (−0.269 − 0.155i)5-s + (−0.984 − 0.176i)6-s + (0.300 + 0.520i)7-s + (−0.589 + 0.807i)8-s + (0.555 + 0.831i)9-s + (0.304 + 0.0649i)10-s + (0.715 − 0.412i)11-s + (0.990 − 0.135i)12-s + (−1.32 − 0.763i)13-s + (−0.446 − 0.402i)14-s + (−0.164 − 0.264i)15-s + (0.311 − 0.950i)16-s − 1.37·17-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(0.791−0.610i)Λ(2−s)
Λ(s)=(=(72s/2ΓC(s+1/2)L(s)(0.791−0.610i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
0.791−0.610i
|
Analytic conductor: |
0.574922 |
Root analytic conductor: |
0.758236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :1/2), 0.791−0.610i)
|
Particular Values
L(1) |
≈ |
0.742676+0.253136i |
L(21) |
≈ |
0.742676+0.253136i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.34−0.436i)T |
| 3 | 1+(−1.52−0.816i)T |
good | 5 | 1+(0.602+0.348i)T+(2.5+4.33i)T2 |
| 7 | 1+(−0.795−1.37i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−2.37+1.36i)T+(5.5−9.52i)T2 |
| 13 | 1+(4.76+2.75i)T+(6.5+11.2i)T2 |
| 17 | 1+5.65T+17T2 |
| 19 | 1+0.963iT−19T2 |
| 23 | 1+(−3.28+5.69i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.85+1.64i)T+(14.5−25.1i)T2 |
| 31 | 1+(3.69−6.40i)T+(−15.5−26.8i)T2 |
| 37 | 1−6.25iT−37T2 |
| 41 | 1+(0.931−1.61i)T+(−20.5−35.5i)T2 |
| 43 | 1+(2.99−1.73i)T+(21.5−37.2i)T2 |
| 47 | 1+(−3.85−6.67i)T+(−23.5+40.7i)T2 |
| 53 | 1−2.54iT−53T2 |
| 59 | 1+(4.62+2.66i)T+(29.5+51.0i)T2 |
| 61 | 1+(−7.93+4.58i)T+(30.5−52.8i)T2 |
| 67 | 1+(−5.95−3.43i)T+(33.5+58.0i)T2 |
| 71 | 1−3.68T+71T2 |
| 73 | 1−2.83T+73T2 |
| 79 | 1+(−2.87−4.98i)T+(−39.5+68.4i)T2 |
| 83 | 1+(5.74−3.31i)T+(41.5−71.8i)T2 |
| 89 | 1+2.98T+89T2 |
| 97 | 1+(1.24+2.16i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.01767830975755357782350099009, −14.13694678763154232469931892792, −12.46192828103001619322008529334, −11.13082072871743772722909188224, −9.992085852300930481645130156985, −8.880465908744216968842542154310, −8.193867575294066097225624339531, −6.79504590041498687806396072087, −4.85663134523370781838398484345, −2.57014684954820428635206915791,
2.04116080153799008088038296487, 3.93334731717163109013865403712, 6.95109993138513701164004883467, 7.48668813279105744966084957247, 8.948149587374605967982285121504, 9.692148190626114705223404215515, 11.21324480270749118581905264935, 12.17191399222121318615344336683, 13.39513652513261198998576543838, 14.66702673473994531238952445891